RENESAS

M51326P
 Analog switch

REJ03F0079-0100Z
Rev.1.0
Sep.22.2003

Description

The M51326P is a semiconductor integrated circuit for use as an analog switch in image-handling equipment. The IC incorporates two audio switches, one with two and one with three inputs, and one video switch with two inputs. Each switch is independently controllable.

Features

- Built-in analog switches for use with video signals and stereo audio signals
- Wide video-switch bandwidth: DC to 10 MHz
- Good crosstalk characteristics (for video): 55 dB (typ.) @ 5 MHz

Applications

- Video equipment

Recommended operating condition

- Power-supply-voltage range: 5 to 14 V
- Rated power-supply voltage: $9 \mathrm{~V}, 12 \mathrm{~V}$

Block diagram

Pin Configuration

Package 16P4

Absolute maximum ratings

(unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=12 \mathrm{~V}$)

Symbol	Item	Ratings	Unit
Vcc	Power-supply voltage	14	V
$\mathrm{~V}_{\text {IS }}$	Input signal voltage	6	V
$\mathrm{~V}_{\text {IC }}$	Input control voltage	Vcc	V
Pd	Power dissipation	1.25	W
$\mathrm{~K} \theta$	Thermal derating	1.25	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {opr }}$	Ambient operating temperature	-20 to +75	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature	-40 to +125	${ }^{\circ} \mathrm{C}$

Electrical characteristics

(unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=12 \mathrm{~V}$)

Symbol	Item	Measured condition	Limits			Unit
			Min.	Typ.	Max.	
Icc	Circuit current		-	28	36	mA
$V_{\text {IDC }}$	Input bias voltage		3.8	4.2	4.6	V
V ODC	Output bias voltage		3.0	3.6	4.2	V
$\Delta_{\text {VODC }}$	Output DC offset voltage		-	15	100	mV
$\mathrm{V}_{\text {ICH }}$	Control-pin threshold voltage	For audio (1) (pin 6 tri - state input)	7.0	8.0	9.0	V
VICL		For audio (1) (pin 6 tri - state input)	3.0	4.0	5.0	V
$\mathrm{V}_{1 \mathrm{C}}$		For audio (2) and images (pins 4, 13)	1.7	2.1	2.5	V
Gv	Voltage gain	$\mathrm{f}=1 \mathrm{kHz}$,	-0.5	-0.1	-	dB
THD	Total harmonic distortion	For audio, $\mathrm{f}=1 \mathrm{kHz}$, Vo $=1 \mathrm{Vrms}$	-	0.02	0.2	\%
V_{N}	Output noise voltage	For audio, $\mathrm{Rg}=600 \Omega$, bandwidth $=15 \mathrm{kHz}$	-	3	50	$\mu \mathrm{Vrms}$
		For video, $\mathrm{Rg}=75 \Omega$, bandwidth $=10 \mathrm{MHz}$	-	0.5	1.0	mVrms
CT	Crosstalk	$\mathrm{f}=1 \mathrm{kHz}$ (for audio)	65	80	-	dB
		$\mathrm{f}=5 \mathrm{MHz}$ (for video)	45	50	-	

Switching mode

Selection of switch settings

Control input *	Switch number		
	\mathbf{S}_{1}	$\mathbf{S}_{\mathbf{2}}$	\mathbf{S}_{3}
H	1	1	1
M	2	(Note)	(Note)
L	3	2	2
Note: connect to Vcc or GND			

Note: connect to Vcc or GND

Control input voltage (pin 6)

Control input	Vcc	
	9 V	12 V
H	7.2 to 9 V	9.2 to 12 V
M	4.2 to 4.8 V	5.2 to 6.8 V
L	0 to 1.8 V	0 to 2.8 V

Control input voltage (pins 4, 13)		
Control input		
	Vcc	12 V
H	2.7 to 9 V	2.7 to 12 V
L	0 to 1.5 V	0 to 1.5 V

Measurement circuit

(unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=12 \mathrm{~V}$)
Measurement circuit for circuit current ICC, input bias voltage $\mathbf{V}_{\text {IDC }}$, output bias voltage $\mathbf{V}_{\text {ODC }}$

Measurement circuit output DC - offset voltage

Video : DC voltages on V12 are measured while switch 1 is at setting 2 and switch 2 is at setting 2, before and after switch 3 is turned to setting 1 or 2.
Sound (1): DC voltages on V1 are measured while switch 2 is at setting 2 and switch 3 is at setting 2, and switch 3 is turned to setting 1,2 , or 3.
Sound (2): DC voltages on V8 are measured while switch 1 is at setting 2 and switch 3 is at setting 2, before and after switch 2 is turned from to setting 1 or 2.

Measurement circuit for control - pin threshold - voltage values

M51326P

Sound (1) measuring the control-pin threshold-voltage value:
Firstly, DC voltage V6 is increased from 3 V to 5 V . Here, we take $\mathrm{V}_{\text {ICL }}$ as the V6 value at which the AC component in the output waveform from pin 1 is turned off. Then, DC voltage V 6 is increased from 7 V to 9 V . Here, we take $\mathrm{V}_{\text {ICH }}$ as the V 6 value at which the AC component in the output waveform from pin 1 is turned on

Sound (2) measuring the control-pin threshold-value voltage:
DC voltage V13 is increased from 1 V to 3 V . Here, we take the V 13 value at which the AC component in the output waveform from pin 8 is turned on as $\mathrm{V}_{\text {IC }}$.

Measuring the image control pin threshold value voltage:
DC voltage V 4 is increased from 1 V to 3 V . This time, we take the V 14 value at which the AC component in the output waveform from pin 12 is turned on as V_{IC}.

Measurement circuit for crosstalk and total harmonic distortion rate (switches for audio)

Relation between the switch states and the monitor output

Switch state		
\mathbf{S}_{1}	\mathbf{S}_{2}	Pin 1 output
1	1	Vos, THD
	2,3	Voc
2	2	Vos,THD
	1,3	Voc
3	3	Vos,THD
	1,2	Voc

Switch state

\mathbf{S}_{3}	\mathbf{S}_{4}	Pin 8 output
1	1	$V_{O C}$
	2	$V_{O C}$
2	1	$V_{O C}$
	2	$V_{O C, T H D}$

Crosstalk: CT = 20log (Vos/Voc) (dB)
Voltage gain: GV $=2010 \mathrm{~g}(\mathrm{Vos} / \mathrm{Vin})(\mathrm{dB})$

M51326P

Measurement circuit for crosstalk and voltage gain (video switch)

Switch state		Sin 12 output
S1	S2	
1	1	Vos
2	2	Voc
	2	Voc

Crosstalk: CT = 2000g (Vos/Voc) (dB)
Voltage gain: GV $=2010 \mathrm{~g}(\mathrm{Vos} / \mathrm{Vin})(\mathrm{dB})$

Measurement circuit for output noise voltage

Characteristic curves
(unless otherwise noted, $\mathrm{Ta}=25^{\circ} \mathrm{C}$)

Application Example

Precautions on usage

Both the video and audio outputs are emitter follower. Accordingly, when the external wiring is long or a capacitive load is added, add a resistor with a value of the tens of ohms order in series near the position of the output pin.

Package Dimension

Rev.1.0, Sep.22.2003, page 13 of 13

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, onte-machi, Chiyoda-ku, Tokyo 100-00004, Japan
Keep safety first in your circuit designs! maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas Techny do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
diagrams, charts, programs, algorithms,
3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor ome page (http://www.renesas.com)
4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assume no responsibility for any damage, liability or other loss resulting from the information contained herein
5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
and/or the country of destination is prohibited
8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom
Tel: <44> (1628) 585 100, Fax: <44> (1628) 585900

Renesas Technology Europe GmbH

Dornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 38070 0, Fax: <49> (89) 9293011
Renesas Technology Hong Kong Ltd.
7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong
Tel: < $852>2265-6688$, Fax: <852> 2375-6836
Renesas Technology Taiwan Co., Ltd.
FL 10, \#99, Fu-Hsing N. Rd., Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
26/F., Ruijin Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.

1, Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

This datasheet has been download from:
www.datasheetcatalog.com
Datasheets for electronics components.

