

Inputs				Outputs
$\overline{\mathrm{PL}}$	$\overline{\mathrm{CE}}$	$\begin{gathered} \text { TC } \\ \text { (Note 1) } \end{gathered}$	CP	$\overline{\mathrm{RC}}$
H	L	H	マ	〕
H	H	X	x	H
H	x	L	x	H
L	x	x	x	H

H = HIGH Voltage Level
L = LOW Voltage Leve
$\mathrm{X}=$ Immaterial
$\sim=$ LOW-to-HIGH Transition
ㄷ = Clock Pulse
Note 1: TC is generated internally

Functional Description

The AC191 is a synchronous up/down counter. The AC191 is organized as a 4-bit binary counter. It contains four edgetriggered flip-flops with internal gating and steering logic to provide individual preset, count-up and count-down operations.
Each circuit has an asynchronous parallel load capability permitting the counter to be preset to any desired number. When the Parallel Load ($\overline{\mathrm{PL}}$) input is LOW, information present on the Parallel Load inputs $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ is loaded into the counter and appears on the Q outputs. This operation overrides the counting functions, as indicated in the Mode Select Table.
A HIGH signal on the $\overline{\mathrm{CE}}$ input inhibits counting. When $\overline{\mathrm{CE}}$ is LOW, internal state changes are initiated synchronously by the LOW-to-HIGH transition of the clock input. The direction of counting is determined by the $\overline{\mathrm{U}} / \mathrm{D}$ input signal, as indicated in the Mode Select Table. $\overline{\mathrm{CE}}$ and $\overline{\mathrm{U}} / \mathrm{D}$ can be changed with the clock in either state, provided only that the recommended setup and hold times are observed.
Two types of outputs are provided as overflow/underflow indicators. The terminal count (TC) output is normally LOW. It goes HIGH when the circuits reach zero in the count down mode or 15 in the count up mode. The TC output will then remain HIGH until a state change occurs, whether by counting or presetting or until $\overline{\mathrm{U}} / \mathrm{D}$ is changed. The TC output should not be used as a clock signal because it is subject to decoding spikes.
The TC signal is also used internally to enable the Ripple Clock ($\overline{\mathrm{RC}}$) output. The $\overline{\mathrm{RC}}$ output is normally HIGH. When $\overline{\mathrm{CE}}$ is LOW and TC is HIGH, $\overline{\mathrm{RC}}$ output will go LOW when the clock next goes LOW and will stay LOW until the clock goes HIGH again. This feature simplifies the design of multistage counters, as indicated in Figure 1 and Figure 2. In Figure 1, each RC output is used as the clock input for the next higher stage. This configuration is particularly advantageous when the clock source has a limited drive capability, since it drives only the first stage. To prevent counting in all stages it is only necessary to inhibit the first stage, since a HIGH signal on $\overline{\mathrm{CE}}$ inhibits the $\overline{\mathrm{RC}}$ output pulse, as indicated in the RC Truth Table. A disadvantage of this configuration, in some applications, is the timing skew between state changes in the first and last stages. This represents the cumulative delay of the clock as it ripples through the preceding stages.
A method of causing state changes to occur simultaneously in all stages is shown in Figure 2. All clock inputs are driven in parallel and the RC outputs propagate the carry/borrow signals in ripple fashion. In this configuration the LOW state duration of the clock must be long enough to allow the negative-going edge of the carry/borrow signal to
ripple through to the last stage before the clock goes HIGH. There is no such restriction on the HIGH state duration of the clock, since the $\overline{\mathrm{RC}}$ output of any device goes HIGH shortly after its CP input goes HIGH.
The configuration shown in Figure 3 avoids ripple delays and their associated restrictions. The $\overline{\mathrm{CE}}$ input for a given stage is formed by combining the TC signals from all the preceding stages. Note that in order to inhibit counting an enable signal must be included in each carry gate. The simple inhibit scheme of Figure 1 and Figure 2 doesn't apply, because the TC output of a given stage is not affected by its own $\overline{\mathrm{CE}}$.

Mode Select Table

Inputs				Mode	
$\overline{\mathbf{P L}}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{U}} / \mathbf{D}$	$\mathbf{C P}$		
H	L	L	-	Count Up	
H	L	H	\sim	Count Down	
L	X	X	X	Preset (Asyn.)	
H	H	X	X	No Change (Hold)	

State Diagram

Functional Description (continued)

FIGURE 1. N-Stage Counter Using Ripple Clock

FIGURE 2. Synchronous N-Stage Counter Using Ripple Carry/Borrow

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 2)	
Supply Voltage (V_{CC})	-0.5 V to +7.0 V
DC Input Diode Current ($1_{1 / \mathrm{K}}$)	
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	+20 mA
DC Input Voltage (V_{l})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Diode Current (lok)	
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA
DC Output Voltage (V_{0})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Output Source or Sink Current (I_{O})	$\pm 50 \mathrm{~mA}$
DC V_{CC} or Ground Current per Output Pin (ICC or $\mathrm{I}_{\mathrm{GND}}$)	$\pm 50 \mathrm{~mA}$
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature (T_{J})	
PDIP	$140^{\circ} \mathrm{C}$

Recommended Operating Conditions

Supply Voltage (V_{CC})	2.0V to 6.0 V
Input Voltage (V_{l})	OV to V_{Cc}
Output Voltage (V_{O})	0 V to V_{Cc}
Operating Temperature (T_{A})	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)	
$\mathrm{V}_{\text {IN }}$ from 30% to 70% of V_{CC}	
V CC @ 3.3V 4.5V, 5.5V	$125 \mathrm{mV} / \mathrm{ns}$

DC Electrical Characteristics

Symbol	Parameter	$\mathrm{V}_{\text {CC }}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
		(V)	Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V} \text { IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 1.5 \\ 2.25 \\ 2.75 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}_{\mathrm{OH}}}$	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.99 \\ & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=-50 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 3) } \end{aligned}$
V_{OL}	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.002 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{l}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & \hline 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 3) } \end{aligned}$
$I_{\text {IN }}$ (Note 5)	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$
IOLD	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
$\mathrm{I}_{\text {OHD }}$	Output Current (Note 4)	5.5			-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$I_{C C}$ (Note 5)	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} \\ & \text { or GND } \end{aligned}$

Note 3: All outputs loaded; thresholds on input associated with output under tes
Note 4: Maximum test duration 2.0 ms , one output loaded at a time
Note 5: $\mathrm{I}_{\mathbb{N}}$ and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.

AC Electrical Characteristics

Symbol	Parameter	V_{cc} (V) (Note 6)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Count Frequency	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 90 \end{aligned}$	$\begin{aligned} & 105 \\ & 133 \end{aligned}$		$\begin{aligned} & 65 \\ & 85 \end{aligned}$		MHz
${ }_{\text {tPLH }}$	Propagation Delay $C P$ to Q_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 15.0 \\ & 11.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 12.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CP to Q_{n}	$\begin{aligned} & \hline 3.3 \\ & 5.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 6.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 14.5 \\ & 10.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 16.0 \\ & 11.5 \\ & \hline \end{aligned}$	ns
$\mathrm{t}_{\text {PL }}$	Propagation Delay CP to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 10.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & \hline 18.0 \\ & 12.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 20.0 \\ & 14.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CP to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{gathered} \hline 10.5 \\ 7.5 \end{gathered}$	$\begin{aligned} & 17.5 \\ & 12.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 19.0 \\ & 13.5 \end{aligned}$	ns
${ }_{\text {t }}$	Propagation Delay CP to $\overline{\mathrm{RC}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} 12.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CP to $\overline{R C}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{CE}}$ to $\overline{\mathrm{RC}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{CE}}$ to $\overline{\mathrm{RC}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 11.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $\overline{\mathrm{U}} / \mathrm{D}$ to $\overline{\mathrm{RC}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.0 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.0 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $\overline{\mathrm{U}} / \mathrm{D}$ to $\overline{\mathrm{RC}}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	ns
${ }_{\text {tPLH }}$	Propagation Delay \bar{U} / D to TC	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 5.0 \end{aligned}$	$\begin{gathered} 11.5 \\ 8.5 \end{gathered}$	$\begin{aligned} & \hline 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay \bar{U} / D to $T C$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 11.0 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{gathered} 12.5 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay $P_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 5.5 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 10.5 \end{aligned}$	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay $P_{n} \text { to } Q_{n}$	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 13.0 \\ 9.5 \end{gathered}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 14.5 \\ & 10.5 \end{aligned}$	ns
${ }_{\text {tpLH }}$	Propagation Delay $\overline{\text { PL }}$ to Q_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 9.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 14.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 17.5 \\ & 10.5 \end{aligned}$	ns
${ }_{\text {tPHL }}$	Propagation Delay $\overline{\text { PL }}$ to Q_{n}	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 13.5 \\ & 10.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 15.5 \\ & 11.0 \end{aligned}$	ns

Note 6: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

Symbol	Parameter	V_{cc} (V) (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ		teed Minimum	
t_{S}	Setup Time, HIGH or LOW P_{n} to $\overline{\mathrm{PL}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	ns
t_{H}	Hold Time, HIGH or LOW P_{n} to $\overline{\mathrm{PL}}$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline-1.5 \\ -0.5 \end{gathered}$	$\begin{aligned} & \hline 0.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	ns
t_{s}	Setup Time, LOW $\overline{\mathrm{CE}}$ to CP	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 4.5 \end{aligned}$	ns
t_{H}	Hold Time, LOW $\overline{\mathrm{CE}}$ to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline-4.0 \\ & -2.5 \end{aligned}$	$\begin{gathered} -0.5 \\ 0 \end{gathered}$	$\begin{gathered} -0.5 \\ 0 \end{gathered}$	ns
t_{s}	Setup Time, HIGH or LOW \bar{U} / D to $C P$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & \hline 8.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 6.5 \end{aligned}$	ns
t_{H}	Hold Time, HIGH or LOW U/D to CP	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & -5.0 \\ & -3.0 \end{aligned}$	$\begin{gathered} 0 \\ 0.5 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0 \\ 0.5 \end{gathered}$	ns
t_{W}	$\overline{\text { PL }}$ Pulse Width, LOW	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 1.0 \end{aligned}$	ns
${ }^{\text {tw }}$	CP Pulse Width, LOW	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	ns
$\mathrm{t}_{\text {rec }}$	Recovery Time $\overline{\mathrm{PL}}$ to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline-0.5 \\ & -1.0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	ns

Capacitance

Symbol	Parameter	Typ	Units	Conditions
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=\mathrm{OPEN}$
C_{PD}	Power Dissipation Capacitance	75.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches（millimeters）unless otherwise noted（Continued）

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life suppor device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Fairchild Semiconductor:
74AC191SJX 74AC191SCX 74AC191PC 74AC191SC 74AC191SJ 74AC191MTCX 74AC191MTC

