TEXAS INSTRUMENTS

# CD40106B Types

Data sheet acquired from Harris Semiconductor SCHS097

## CMOS Hex Schmitt Triggers

High-Voltage Types (20-Volt Rating)

■ CD40106B consists of six Schmitttrigger circuits. Each circuit functions as an inverter with Schmitt-trigger action on the input. The trigger switches at different points for positive- and negative-going signals. The difference between the positive-going voltage (VP) and the negative-going voltage (VN) is defined ashysteresis voltage (VH) (see Fig.6). The CD40106B types are supplied in 14lead hermetic dual-in-line ceramic packages (D and F suffixes), 14-lead dual-in-line plastic package (E suffix), and in chip form (H suffix).

#### Features:

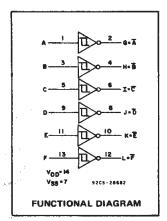
- Schmitt-trigger action with no external components
  Hysteresis voltage (typ.) 0.9 V at V<sub>DD</sub> = 5 V, 2.3 V at
- $V_{DD}$  = 10 V, and 3.5 V at  $V_{DD}$  = 15 V
- Noise immunity greater than 50%
- No limit on input rise and fall times
  Standardized symmetrical output chara
- Standardized, symmetrical output characteristics
  100% tested for quiescent current at 20 V
- Maximum input current of 1 µA at 18 V over full package-temperature range; 100 nA at 18 V and 25°C
- Low VDD to VSS current during slow input ramp
- 5-V, 10-V, and 15-V parametric ratings
- Meets all requirements of JEDEC Tentative Standard No. 13B, "Standard Specifications for Description of 'B' Series CMOS Devices"

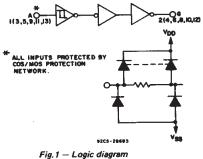
#### Applications:

- Wave and pulse shapers
- High-noise-environment systems
- Monostable multivibrators
- Astable multivibrators

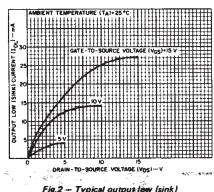
| MAXIMUM RATINGS, Absolute-Maximum Values:                                                                    |
|--------------------------------------------------------------------------------------------------------------|
| DC SUPPLY-VOLTAGE RANGE, (VDD)                                                                               |
| Voltages referenced to VSS Terminal)                                                                         |
| INPUT VOLTAGE RANGE, ALL INPUTS                                                                              |
| DC INPUT CURRENT, ANY ONE INPUT ±10mA                                                                        |
| POWER DISSIPATION PER PACKAGE (PD):                                                                          |
| For $T_A = -55^{\circ}C$ to $+100^{\circ}C$                                                                  |
| For $T_A = +100^{\circ}C$ to $+125^{\circ}C$ Derate Linearity at $12 \text{mW/}^{\circ}C$ to $200 \text{mW}$ |
| DEVICE DISSIPATION PER OUTPUT TRANSISTOR                                                                     |
| FOR T <sub>A</sub> = FULL PACKAGE-TEMPERATURE RANGE (All Package Types)                                      |
| OPERATING-TEMPERATURE RANGE (T <sub>A</sub> )55°C to +125°C                                                  |
| STORAGE TEMPERATURE RANGE (Tstg)65°C to +150°C                                                               |
| LEAD TEMPERATURE (DURING SOLDERING):                                                                         |
| At distance $1/16 \pm 1/32$ inch (1.59 $\pm 0.79$ mm) from case for 10s max +265°C                           |

#### **RECOMMENDED OPERATING CONDITIONS**

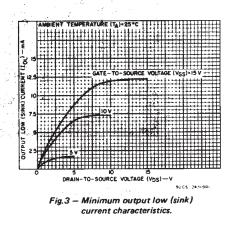

For maximum reliability, nominal operating conditions should be selected so that operation is always within the following ranges:


|                                                                 | LIN  | UNITS |       |  |
|-----------------------------------------------------------------|------|-------|-------|--|
| CHARACTERISTIC                                                  | MIN. | MAX.  | UNITS |  |
| Supply-Voltage Range (For TA<br>Full Package-Temperature Range) | 3    | 18    | Ŷ     |  |

#### DYNAMIC ELECTRICAL CHARACTERISTICS

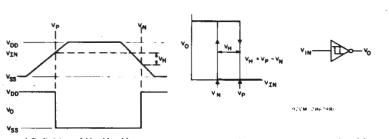

At  $T_A = 25^{\circ}C$ , Input  $t_r$ ,  $t_f = 20 \text{ ns}$ ,  $C_L = 50 \text{ pF}$ ,  $R_L = 200 \text{ k}\Omega$ 

|                         | TEST COND  | ITIONS | LI   | LIMITS |          |  |  |
|-------------------------|------------|--------|------|--------|----------|--|--|
| CHARACTERISTIC          | VDD<br>(V) |        | TYP. | MAX.   | UNITS    |  |  |
| Propagation Delay Time: |            | 5      | 140  | 280    |          |  |  |
| tPHL,                   |            | 10     | 70   | 140    | i ns.    |  |  |
| <sup>t</sup> PLH        |            | 15     | 60   | 120    | ja silit |  |  |
| Transition Time:        |            | 5      | 100  | 200    |          |  |  |
| tTHL,                   |            | 10     | 50   | 100    | ns       |  |  |
| <b>TLH</b>              |            | 15     | 40   | 80     |          |  |  |
| Input Capacitance, CIN  | Any Input  |        | 5    | 7.5    | pF       |  |  |

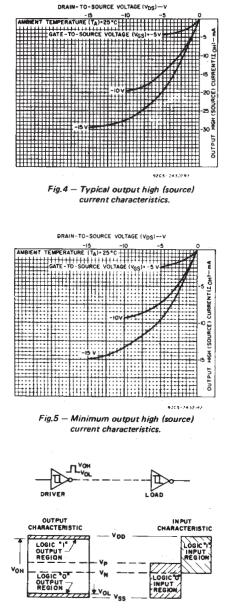





(1 of 6 Schmitt triggers).




current characteristics.

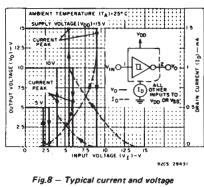



#### STATIC ELECTRICAL CHARACTERISTICS

| CHARACTERISTIC                           | co<br>Vo   | NDITI      |            | LIMI        | LIMITS AT INDICATED TEMPERATURES (°C) |       |       |       |             |       |          |
|------------------------------------------|------------|------------|------------|-------------|---------------------------------------|-------|-------|-------|-------------|-------|----------|
|                                          | (V)        | VIN<br>(V) | VDD<br>(V) | -55         | -40                                   | +85   | +125  | Min.  | +25<br>Typ. | Mex.  | -        |
| Quiescent Device<br>Current, IDD<br>Max. | . <u>_</u> | 0,5        | 5          | 1           | 1                                     | 30    | 30    |       | 0.02        | 1     | μА       |
|                                          | -          | 0,10       | 10         | 2           | 2                                     | 60    | 60    | -     | 0.02        | 2     |          |
|                                          | -          | 0,15       | 15         | 4           | 4                                     | 120   | 120   | -     | 0.02        | 4     |          |
|                                          | -          | 0,20       | 20         | 20          | 20                                    | 600   | 600   | -     | 0.04        | 20    | 1        |
| Positive Trigger                         | _          | -          | 5          | 2.2         | 2.2                                   | 2.2   | 2.2   | 2.2   | 2.9         | - 1   |          |
| Threshold Voltage                        | -          |            | 10         | 4.6         | 4.6                                   | 4.6   | 4.6   | 4.6   | 5.9         | -     | 1        |
| V <sub>p</sub> Min.                      | -          | -          | 15         | 6.8         | 6.8                                   | 6.8   | 6.8   | 6.8   | 8.8         |       | 1        |
|                                          | -          | -          | 5          | 3.6         | 3.6                                   | 3.6   | 3.6   | -     | 2.9         | 3.6   | V.       |
| Vp Max.                                  | -          | _          | 10         | 7.1         | 7.1                                   | 7.1   | 7.1   | -     | 5.9         | 7.1   | 1        |
| F                                        | -          | -          | 15         | 10.8        | 10.8                                  | 10.8  | 10.8  | -     | 8.8         | .10,8 | 1        |
| Negative Trigger                         |            | -          | 5          | 0.9         | 0.9                                   | 0.9   | 0.9   | 0.9   | 1.9         | -     | <u> </u> |
| Threshold Voltage                        | _          |            | 10         | 2.5         | 2.5                                   | 2.5   | 2.5   | 2.5   | 3.9         | _     | 1        |
| V <sub>N</sub> Min.                      | -          | -          | 15         | 4           | 4                                     | 4     | 4     | 4     | 5.8         | -     |          |
|                                          |            | -          | 5          | 2.8         | 2.8                                   | 2.8   | 2.8   |       | 1.9         | 2.8   | · ·      |
| V <sub>N</sub> Max.                      | -          | . –        | 10         | 5.2         | 5.2                                   | 5.2   | 5.2   | -     | 3.9         | 5.2   |          |
|                                          | -          |            | 15         | 7.4         | 7.4                                   | 7.4   | 7.4   |       | 5.8         | 7.4   |          |
|                                          | -          |            | 5          | 0.3         | 0.3                                   | 0.3   | 0.3   | 0.3   | 0.9         | -     | v        |
| Hysteresis Voltage                       | -          | -          | 10         | 1.2         | 1.2                                   | 1.2   | 1.2   | 1.2   | 2.3         | -     |          |
| V <sub>H</sub> Min.                      | -          |            | 15         | 1.6         | 1.6                                   | 1.6   | 1.6   | 1.6   | 3.5         | -     |          |
|                                          |            | _          | 5          | 1.6         | 1.6                                   | 1.6   | 1.6   | -     | 0.9         | 1.6   |          |
| V <sub>H</sub> Max.                      | -          | -          | 10         | 3.4         | 3.4                                   | 3.4   | 3.4   | _     | 2.3         | 3.4   |          |
|                                          | 1          | _          | 15         | 5           | 5                                     | 5     | 5     | -     | 3.5         | 5     |          |
| Output Low (Sink)                        | 0.4        | 0,5        | 5          | 0.64        | 0.61                                  | 0.42  | 0.36  | 0.51  | 1           | _     |          |
| Current,                                 | 0.5        | 0,10       | 10         | 1.6         | 1.5                                   | 1.1   | 0.9   | 1.3   | 2.6         | -     |          |
| IOL Min.                                 | 1.5        | 0,15       | 15         | 4.2         | 4                                     | 2.8   | 2.4   | 3.4   | 6.8         | -     | 1        |
| Output High                              | 4.6        | 0,5        | 5          | 0.64        | -0.61                                 | -0.42 | -0.36 | -0.51 | -1          |       | mA       |
| (Source)                                 | 2.5        | 0.5        | 5          | -2          | -1.8                                  | -1.3  | -1.15 | -1.6  | -3.2        | -     |          |
| Current,<br>IOH Min.                     | 9.5        | 0,10       | 10         | -1.6        | -1.5                                  | -1.1  | -0.9  | -1.3  | -2.6        | -     |          |
|                                          | 13.5       | 0,15       | 15         | -4.2        | 4                                     | 2.8   | -2.4  | -3.4  | -6.8        |       |          |
| Output Voltage                           | _          | 5          | 5          |             | 0.                                    | 05    |       | -     | 0           | 0.05  |          |
| Low-Level,<br>VOL Max.                   | -          | 10         | 10         | 0.05 - 0 0. |                                       |       |       |       | 0.05        | 0.05  |          |
|                                          | -          | 15         | 15         |             | 0.                                    | 05    |       | -     | 0           | 0.05  | v        |
| Output Voltage                           |            | 0          | 5          |             | 4.9                                   | 95    |       | 4.95  | 5           | _     | v        |
| High Level,                              | -          | 0          | 10         |             | 9.                                    | 95    |       | 9.95  | 10          | -     | 1        |
| VOH Min.                                 |            | 0          | 15         |             | 14                                    | .95   |       | 14.95 | 15          |       |          |
| Input Current,<br>IIN Max.               |            | 0,18       | 18         | ±0.1        | ±0.1                                  | ±1    | ±1    | _     | ±10-5       | ±0.1  | μA       |

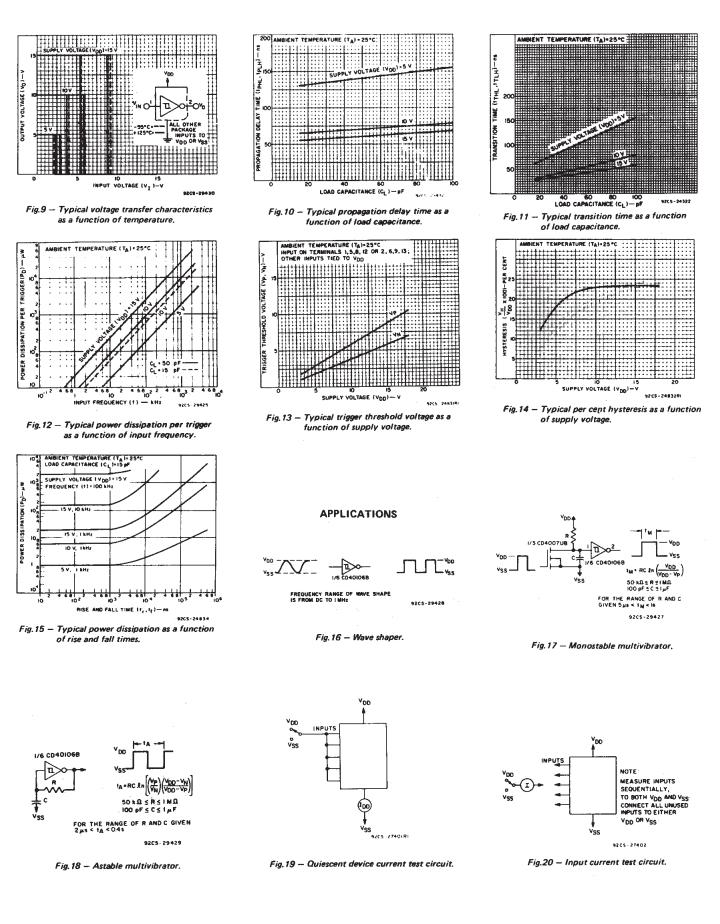


a) Definition of Vp, V<sub>N</sub>, V<sub>H</sub> b) Transfer characteristics of 1 of 6 gates Fig.6 - Hysteresis definition, characteristics, and test set-up.




9205-28680

3


COMMERCIAL CMOS HIGH VOLTAGE ICs





transfer characteristics.

### CD40106B Types



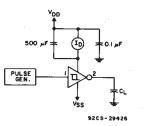
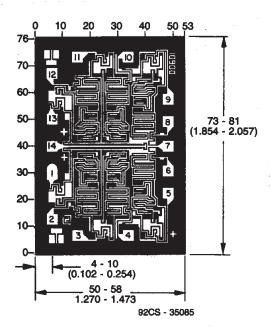




Fig.21 - Dynamic power dissipation test circuit.

TERMINAL ASSIGNMENT



Dimensions in parentheses are in millimeters and are derived from the basic inch dimensions as indicated. Grid graduations are in mils ( $10^{-3}$  inch).

Dimensions and Pad Layout for CD40106BH

#### **IMPORTANT NOTICE**

Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product or service without notice, and advise customers to obtain the latest version of relevant information to verify, before placing orders, that information being relied on is current and complete. All products are sold subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those pertaining to warranty, patent infringement, and limitation of liability.

TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE ("CRITICAL APPLICATIONS"). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO BE FULLY AT THE CUSTOMER'S RISK.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards must be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used. TI's publication of information regarding any third party's products or services does not constitute TI's approval, warranty or endorsement thereof.

Copyright © 1998, Texas Instruments Incorporated