

# CXA2060BS

# Y/C/RGB/D for PAL/NTSC/SECAM Color TVs

#### Description

The CXA2060BS is a bipolar IC which integrates the luminance signal processing, chroma signal processing, RGB signal processing, and sync and deflection signal processing functions for PAL/ NTSC/SECAM system color TVs onto a single chip. This IC includes deflection processing functions for wide-screen TVs. With a SECAM decoder and 1H delay line built in for PAL/SECAM, this IC can be used in configuring multi-color system TV set.

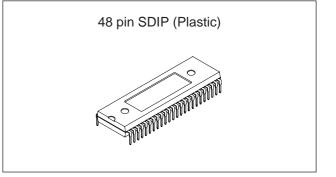
#### Features

- Supports the I<sup>2</sup>C bus
- 1H delay line and SECAM decoder
- · Supports NTSC/PAL-N/PAL-M systems with three crystal pins
- Deflection compensation circuit for support of various wide modes
- · Count down system eliminates need for V oscillation frequency adjustment
- Automatic identification of 50/60Hz vertical frequency (forced control possible)
- Supports non-interlace display (even/odd selectable)
- Automatic identification of PAL, NTSC and SECAM color systems (forced control possible)
- Automatic identification of 4.43MHz/3.58MHz for crystal (forced control possible)
- No adjustment of Y/C filter required
- Three CV inputs, two Y/C inputs (Y/C input shared with CV input), one Y/C input supporting external comb filter, two RGB inputs
- Dynamic picture/dynamic color circuit
- AKB and gamma correction circuits
- YS1 can be forcibly turned OFF
- FSC output (shared with PAL-N crystal pin)

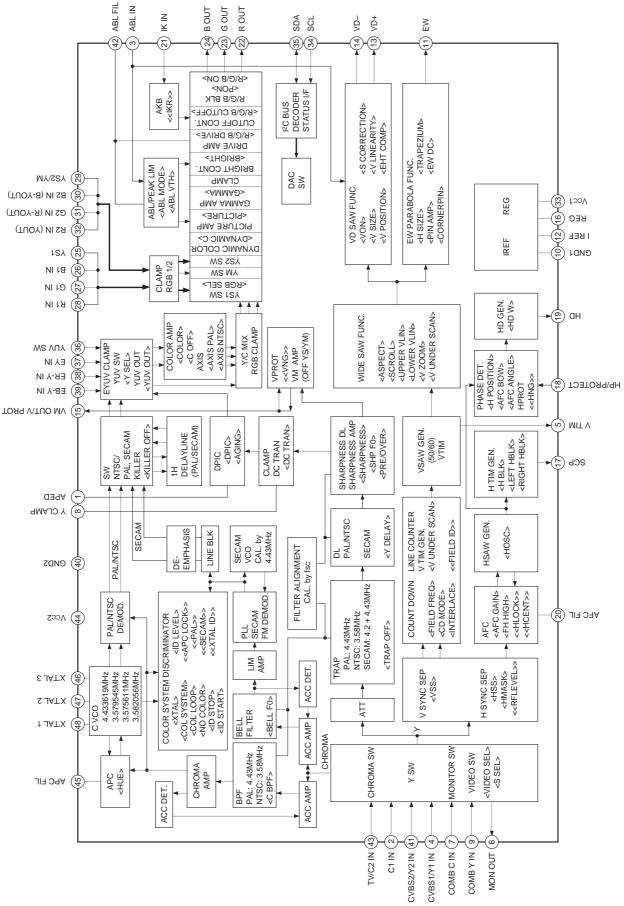
#### Applications

Color TVs (4:3, 16:9)

#### Structure

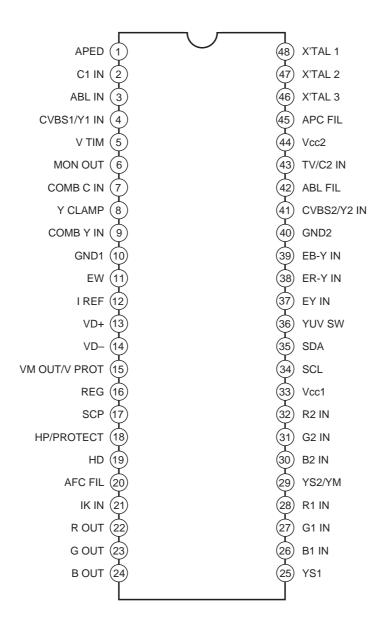

Bipolar silicon monolithic IC

#### **Absolute Maximum Ratings** (Ta = 25°C, GND1, 2 = 0V)


 Supply voltage Vcc1, 2 -0.3 to +12 V °C Operating temperature Topr -20 to +75 • Storage temperature Tstg -65 to +150 °C Allowable power dissipation PD 1.5 W (When mounted on a 50mm × 50mm board) -0.3 to Vcc1, 2 + 0.3 Voltage at each pin V perating Conditions

| Operating Conditions |         |         |   |
|----------------------|---------|---------|---|
| Supply voltage       | Vcc1, 2 | 9 ± 0.5 | V |

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.




**Block Diagram** 



- 2 -

## **Pin Configuration**



# **Pin Description**

| Pin<br>No. | Symbol      | Equivalent circuit                                                 | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------|-------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | APED        | 1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | Connects a capacitor for black peak hold<br>of the dynamic picture feature (black<br>extension).<br>The 4.7µF capacitor is connected to GND.                                                                                                                                                                                                                                                                                                                                                        |
| 2          | C1 IN       | 2<br>147<br>₩<br>50k<br>5.4V<br>777                                | Chroma signal input.<br>Input a chroma signal having a burst level<br>of 300mVp-p via a 0.01µF capacitor.<br>Normally the S pin signal is input.                                                                                                                                                                                                                                                                                                                                                    |
| 3          | ABL IN      | 3<br>147<br>147<br>147<br>86k<br>777 777 777<br>777                | This pin is for both ABL control signal<br>input and VD high-voltage correction<br>signal input.<br>High-voltage correction has linear control<br>characteristics when this pin's voltage is in<br>the approximate range of 1V and 8V.<br>Control characteristics can be varied<br>using the EHT_COMP control of the bus.<br>ABL functions as a PIC/BRT-ABL<br>(average value type).<br>The threshold voltage at which ABL<br>activates can be switched to either 3V or<br>1V depending on the bus. |
| 4          | CVBS1/Y1 IN | (4) 147<br>₩<br>\$50k<br>777 777<br>5.4V                           | CVBS signal/luminance signal input.<br>Input a 1Vp-p (100% white including sync)<br>CVBS signal via a 1µF capacitor.<br>Input the Y signal when a separated Y/C<br>signal is input.                                                                                                                                                                                                                                                                                                                 |

| Pin<br>No. | Symbol    | Equivalent circuit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Description                                                                                                                                                                                                                                      |
|------------|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5          | V TIM     | 5<br>147<br>100µА<br>5<br>25k ≷<br>777 777 777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V timing pulse output.<br>This is a 0/5V negative polarity pulse.<br>HSS/VSS can be monitored using the<br>V TIM SEL register.                                                                                                                   |
| 6          | MON OUT   | 6<br>147<br>6<br>147<br>100µА<br>100µА<br>100µА<br>100µА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Output of the signal input from TV, CVBS1<br>or CVBS2 as selected by VIDEO SEL and<br>S SEL of the bus.<br>In the case of S pin input, a luminance<br>signal and chroma signal are mixed and<br>output.<br>Output level is 2Vp-p including sync. |
| 7          | COMB C IN | 7     147     10p     25k       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11       11     11     11     11< | Chroma signal input from a comb filter.<br>The input chroma signal is a 0.6Vp-p burst<br>signal.                                                                                                                                                 |
| 8          | Y CLAMP   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Connects a capacitor for luminance signal<br>clamp.<br>The 0.1µF capacitor is connected to GND.                                                                                                                                                  |
| 9          | COMB Y IN | (9)<br>147 25k<br>W<br>W<br>S<br>25k<br>↓<br>5.4V<br>777<br>777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Luminance signal input from a comb filter.<br>The signal is input via a 1µF capacitor<br>and has a level of 2Vp-p. (100% white<br>including sync)                                                                                                |

| Pin<br>No. | Symbol | Equivalent circuit                                       | Description                                                                                                                                                          |
|------------|--------|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10         | GND1   |                                                          | GND for 1HDL and deflection system circuit.                                                                                                                          |
| 11         | EW     | 11<br>1.2k                                               | V parabola wave output.                                                                                                                                              |
| 12         | I REF  | 12<br>147<br>W<br>7.2k                                   | This pin is used to set the reference current within the IC.<br>A $10k\Omega$ resistor (metallic film resistor)<br>having an error less than 1% is connected to GND. |
| 13         | VD+    | 13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13<br>13 | V sawtooth wave output.                                                                                                                                              |
| 14         | VD-    | (14)<br>14<br>777 777                                    | - The polarity of Pin 13 output and Pin 14<br>output are reversed.                                                                                                   |

| Pin<br>No. | Symbol            | Equivalent circuit                                      | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------------|---------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15         | VM OUT/<br>V PROT | (15) 147<br>(15) 147<br>(15) 147<br>(15) 147<br>(15) 1k | Output of luminance signal differential<br>waveform for VM (Velocity Modulation).<br>The phase of VM output is synchronized<br>to the phase of RGB output.<br>It is approximately 250ns ahead of RGB<br>output.<br>This pin is also used for V protect signal<br>input. When the large current (4mA) is<br>forcibly drawn through this pin, all RGB<br>output is blanked, and 1 is output to the<br>status register VNG.                                                |
| 16         | REG               | (16)<br>16<br>↓ 500<br>↓ 4.4k<br>7/7 7/7                | Decoupling capacitance for the regulator<br>within the IC.<br>The 47µF capacitor is connected to GND.                                                                                                                                                                                                                                                                                                                                                                   |
| 17         | SCP               | 147<br>147<br>25k<br>777 777 777 777                    | Sand castle pulse output.<br>The sand castle pulse is a waveform<br>superimposed with the burst gate pulse on<br>the composite blanking pulse.                                                                                                                                                                                                                                                                                                                          |
| 18         | HP/PROTECT        | 147<br>10k<br>60k<br>96k<br>96k<br>↓<br>100μA<br>100μA  | H deflection pulse input for H AFC.<br>The 5Vp-p pulse is input via a capacitor.<br>Since this pin is also used to input an X-<br>RAY protect signal, a hold down function<br>activates if this pin's voltage goes above a<br>"7V cycle" and below 1V. If this occurs,<br>HD output goes high impedance, RGB<br>output is blanked, and 1 is output to the<br>status register HNG. It is necessary to<br>turn the IC's power OFF then ON again to<br>cancel this status. |

| Pin<br>No.     | Symbol                  | Equivalent circuit                                  | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------|-------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19             | HD                      | 147<br>19<br>147<br>147<br>20k<br>777<br>777<br>777 | H drive signal output.<br>This is open collector output for the NPN<br>transistor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 20             | AFC FIL                 | 20<br>147<br>147<br>1k<br>100k<br>30k<br>777<br>777 | Connects an AFC lag lead filter.<br>CR is connected to GND.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21             | IK IN                   | 21<br>147<br>4k<br>3k<br>7/7<br>7/7                 | CRT beam current input (cathode current IK).<br>This current is converted into voltage within the IC.<br>In order to eliminate any adverse effects exercised by CRT leak current (max. 100 $\mu$ A) for AKB operation, it is clamped at the V blanking interval. The AKB loop is activated by comparing the reference pulse component of this signal to the reference voltage within the IC.<br>The RGB output cutoff can be varied using CUTOFF of the bus. The IK reference signal current can be controlled ±50% around a 13 $\mu$ A center. Since the beam current of the video section is large, be sure to attach a zener diode of about 4V to the pin to protect the IC. |
| 22<br>23<br>24 | R OUT<br>G OUT<br>B OUT | 220<br>22<br>23<br>24<br>777<br>777<br>777          | RGB signal output.<br>Outputs 3.0Vp-p during 100% white input.<br>PICTURE: 3Fh<br>DRIVE: 3Fh<br>BRIGHT: 1Fh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Pin<br>No.     | Symbol                  | Equivalent circuit                                         | Description                                                                                                                                                                                                                                                                                                                        |
|----------------|-------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 25             | YS1                     | 25 147<br>₩ ₹ 30k<br>777 777 777                           | YS1 switch control pin.<br>Selects RGB1 input.<br>YS1 Vth: 0.7V<br>This pin is also used as the slave address<br>modification switch.<br>If the voltage at this pin goes over 7V, the<br>slave address is changed from 88h to<br>8Ah.<br>SLAVE ADDRESS Vth: 7V                                                                     |
| 26<br>27<br>28 | B1 IN<br>G1 IN<br>R1 IN | 26<br>27<br>28<br>1.2k<br>777<br>60k<br>777                | RGB1 signal input.<br>A 0.7Vp-p (no-sync 100 IRE) signal is<br>input via a 0.01µF capacitor.<br>The input signal is clamped at the SCP<br>burst timing.                                                                                                                                                                            |
| 29             | YS2/YM                  | 29<br>147<br>147<br>147<br>13k<br>77k<br>777<br>777<br>777 | YS2/YM switch control pin.<br>Selects RGB2 input.<br>When operating at High level (YM Vth:<br>0.7V) as a YM switch the output signal<br>undergoes 10dB attenuation.<br>YS2 Vth: 2V                                                                                                                                                 |
| 30<br>31<br>32 | B2 IN<br>G2 IN<br>R2 IN | 30<br>31<br>32<br>777<br>777<br>777<br>777<br>777          | RGB2 signal input.<br>A 0.7Vp-p (no-sync 100 IRE) signal is<br>input via a 0.01 $\mu$ F capacitor. The input<br>signal is clamped at the SCP burst timing<br>just as RGB1 IN.<br>This pin becomes the YUV output pin<br>based on the YUV OUT register.<br>Be sure to pull up this pin by 10k $\Omega$ when<br>used for YUV output. |
| 33             | Vcc1                    |                                                            | Power pin for the signal block and deflection block.                                                                                                                                                                                                                                                                               |

| Pin<br>No. | Symbol             | Equivalent circuit                        | Description                                                                                                                                                                     |
|------------|--------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34         | SCL                | 34<br>4k<br>10k<br>777 777<br>777         | I <sup>2</sup> C bus standard SCL (Serial Clock) input.                                                                                                                         |
| 35         | SDA                | 35<br>→ W<br>7.5k<br>7.5k<br>7.5k<br>7.5k | I <sup>2</sup> C bus standard SDA (Serial Data)<br>input/output.                                                                                                                |
| 36         | YUV SW             | 36 147<br>₩ \$20k<br>777 777 777          | YUV SW control pin.<br>Selects external YUV input.<br>Vth: 0.7V<br>This switch includes a function for forcibly<br>turning OFF external Y input only using<br>Y SEL of the bus. |
| 37         | EY IN              | 37<br>.5k<br>40k                          | External Y/R-Y/B-Y signal input.<br>Input is via a 0.01µF capacitor.                                                                                                            |
| 38<br>39   | ER-Y IN<br>EB-Y IN | 38<br>39<br>1.5k<br>65k                   | EY IN: 0.7Vp-p (no sync)<br>ER-Y IN: 0.735Vp-p (75% color bar)<br>EB-Y IN: 0.931Vp-p (75% color bar)                                                                            |
| 40         | GND2               |                                           | GND pin for signal block circuits.                                                                                                                                              |

| Pin<br>No. | Symbol      | Equivalent circuit                            | Description                                                                                                                                                            |
|------------|-------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41         | CVBS2/Y2 IN | (41)<br>147<br>₩<br>50k<br>5.4V<br>777<br>777 | CVBS signal/luminance signal input.<br>A 1Vp-p signal (including sync) is input<br>via a 1µF capacitor.<br>Input the Y signal when a separated Y/C<br>signal is input. |
| 42         | ABL FIL     | 42<br>1.2k<br>777 777                         | Connects the capacitor (4.7µF) forming the ABL control signal LPF to GND.                                                                                              |
| 43         | TV/C2 IN    | (43) 147<br>₩<br>50k<br>50k<br>5.4V<br>777    | Input of CVBS signal from a TV tuner or<br>chroma signal.<br>A 1Vp-p (including sync) CVBS signal or<br>300mVp-p burst chroma signal is input<br>via a 1µF capacitor.  |
| 44         | Vcc2        |                                               | Power pin for the signal block.                                                                                                                                        |
| 45         | APC FIL     | 4.6V<br>1 K 7777 \$1k<br>(45)                 | Connects a chroma APC lag lead filter.<br>CR is connected to GND.                                                                                                      |

| Pin<br>No. | Symbol  | Equivalent circuit                                                                    | Description                                                                                                                                                                                                                                        |
|------------|---------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 46         | X'tal 3 | (46)<br>(46)<br>↓ ↓<br>↓ ↓<br>↓ ↓<br>↓ ↓<br>↓ ↓<br>↓ ↓<br>↓ ↓<br>↓                    | Connects an APC crystal.<br>The crystals should be connected as<br>follows.                                                                                                                                                                        |
| 47         | X'tal 2 | (47)<br>(47)<br>(47)<br>(47)<br>(47)<br>(47)<br>(2k)<br>(2k)<br>(1.33k)<br>777<br>777 | X'tal 3: PAL-N crystal (3.58205625MHz)<br>X'tal 2: NTSC crystal (3.579545MHz)<br>X'tal 1: PAL/SECAM crystal<br>(4.43361875MHz) or<br>PAL-M crystal<br>(3.57561149MHz)<br>Pin 46 can be switched for use as FSC<br>output using the FSCSW register. |
| 48         | X'tal 1 | $\begin{array}{c} 1k \\ 1k \\ 2k \\ 2k \\ 1.33k \\ 777 \\ 777 \end{array}$            | 2V DC, 0.7Vp-p signal is output.                                                                                                                                                                                                                   |

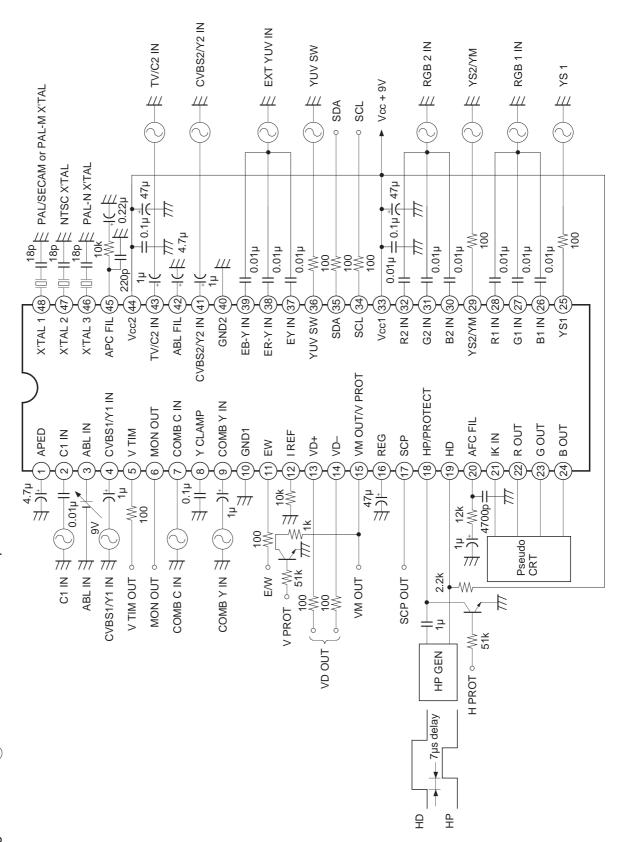
| Conditions      |
|-----------------|
| Measurement     |
| Characteristics |
| Electrical (    |

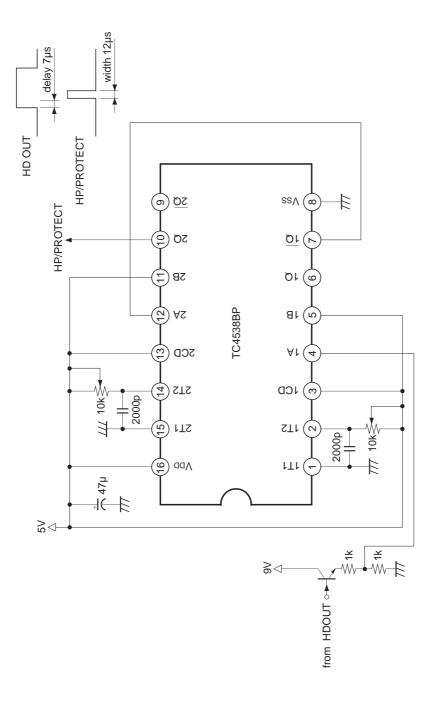
Set I<sup>2</sup>C bus registers to I<sup>2</sup>C Bus Register Initial Setting Values and measure them.

Ta = 25°C, Vcc1, Vcc2 = 9V, GND1, GND2 = 0V

| vei    | I-U DUS registers to I-U E             | sus regisi | Set I⁺C bus registers to I⁺C bus Register Initial Setting values and measure them. | re tnem.             | $Ia = 25^{\circ}C$ , VCC1, VCC2 = 9V, GND1, GND2 = UV | 75 = 20 | , GND1 | , פועע |      |
|--------|----------------------------------------|------------|------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------|---------|--------|--------|------|
| No.    | ltem                                   | Symbol     | Measurement conditions                                                             | Measure-<br>ment pin | Measurement contents                                  | Min.    | Typ.   | Max.   | Unit |
| ~      | Current consumption                    | lcc        | Vcc1, Vcc2 = 9V<br>Bus data: initial setting values                                | 33, 44               | Measure the current flowing into the pin.             | 80      | 125    | 170    | mA   |
| sy     | Sync deflection block items            |            |                                                                                    |                      |                                                       |         |        |        |      |
| 7      | Horizontal free-running<br>frequency   | fHFR       | HOSC = 7 (no input signal)<br>FH HIGH = 1                                          |                      |                                                       | 15.5    | 15.7   | 15.9   | kНz  |
| б      | Horizontal free-running<br>frequency 2 | fHHIFR     | FH HIGH = 0                                                                        |                      |                                                       | 16.2    | 16.7   | 17.2   | kHz  |
| 4      | HD pulse width                         | HDw        | HDW = 0                                                                            | 6                    | HD HDW                                                | 22.5    | 24     | 25.5   | sh   |
| ى<br>ك | HD pulse width 2                       | HDw        | HDW = 1<br>tstr (HP) = 7.5µs, tHP = 12µs                                           |                      | Hsync HPph 12µs                                       | 19      | 20     | 21     | sh   |
| 9      | HP phase                               | НРрһ       | HPph = HP (cent) – Hsync (cent)                                                    | 18                   | T.5µs                                                 | 3.0     | 3.7    | 4.4    | sh   |
| 2      | H BLK phase                            | HBLKph     | HBLKph = SCP (HBLKrise) –<br>Hsync (cent)                                          |                      | Hsync                                                 | -2.5    | -1.75  | Ĩ      | sц   |
| ω      | H BLK pulse width                      | HBLKw      |                                                                                    | 17                   | [                                                     | 6       | 10     | 11     | sh   |
| 6      | BGP phase                              | BGPph      | BGPph = SCP (BGPrise) –<br>Hsync (cent)                                            | :                    | SCP                                                   | 3.4     | 3.9    | 4.4    | sц   |
| 10     | BGP pulse width                        | BGPw       |                                                                                    |                      | HBLKph HBLKw                                          | 2.8     | 3.0    | 3.2    | sц   |
|        |                                        |            |                                                                                    |                      |                                                       |         |        |        |      |

| Unit                   | srl                                                          | srl              | >                                          | >                                     | ><br>E                                     | %                                         | >                                           | ><br>E                                 |
|------------------------|--------------------------------------------------------------|------------------|--------------------------------------------|---------------------------------------|--------------------------------------------|-------------------------------------------|---------------------------------------------|----------------------------------------|
| Мах.                   | 30                                                           | 75               | 3.8                                        | 1.5                                   | 10                                         | 101                                       | 4.3                                         | 670                                    |
| Typ.                   | 20                                                           | 60               | 3.6                                        | 1.35                                  | 0                                          | 100                                       | 4.1                                         | 560                                    |
| Min.                   | 10                                                           | 45               | 3.4                                        | 1.2                                   | -10                                        | 66                                        | 3.9                                         | 450                                    |
| Measurement contents   | Vsync VriMw                                                  | HqMITV<br>MITV   | Vsync                                      | VD+<br>VSdc1<br>TT                    | Vsync 8.78ms                               | VD+<br>VSdc2<br>TTT                       | Vsync<br>1.5ms                              | EW VEWdc0 VEWdc1                       |
| Measure-<br>ment pin   | ¥                                                            | )                | ç                                          | <del>.</del>                          |                                            | <del>6</del>                              |                                             | -                                      |
| Measurement conditions | C/D non-standard mode<br>VTIMph = VTIM (fall) – Vsync (fall) |                  | 50Hz                                       | 50Hz                                  | 60Hz – 50Hz<br>∆VSdc = VSdc2 – VSdc1       | 60Hz/50Hz<br>∆VSp-p = VSp-p2/VSp-p1 × 100 | 50Hz                                        | 50Hz<br>VEWp-p = VEWdc1 – VEWdc0       |
| Symbol                 | VTIMph                                                       | VTIMw            | VSdc1                                      | VSp-p1                                | ΔVSdc                                      | ∆VSp-p                                    | VEWdc1                                      | VEWp-p                                 |
| ltem                   | VTIM phase                                                   | VTIM pulse width | V drive output<br>center voltage<br>(50Hz) | V drive output<br>amplitude<br>(50Hz) | V drive output<br>center voltage<br>(60Hz) | V drive output<br>amplitude<br>(60Hz)     | EW drive output<br>center voltage<br>(50Hz) | EW drive output<br>amplitude<br>(50Hz) |
| Ň                      | 11                                                           | 12               | 13                                         | 14                                    | 15                                         | 16                                        | 17                                          | 18                                     |


| Unit                   | ><br>E                                      | %                                                                            |                    | >              | >                        | >             | Ац                                                                                       | %                                                                                        | л<br>Г                            |
|------------------------|---------------------------------------------|------------------------------------------------------------------------------|--------------------|----------------|--------------------------|---------------|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------|
| Мах.                   | 10                                          | 103                                                                          |                    | 0.3            | 0.3                      | 0.3           | 29                                                                                       | 37                                                                                       | 730                               |
| Typ.                   | 0                                           | 100                                                                          |                    | 0.15           | 0.15                     | 0.15          | 22                                                                                       | 32                                                                                       | 670                               |
| Min.                   | -10                                         | 97                                                                           |                    | 0              | 0                        | 0             | 5                                                                                        | 27                                                                                       | 610                               |
| Measurement contents   | Vsync<br>1.5ms<br>8.78ms                    |                                                                              | -                  |                | Measure the pin voltage. |               | TV/C2IN<br>TTV/C2IN<br>22H 23H 24H 25H 26H 27H<br>22H 23H 24H 25H 26H 27H<br>IKIN (Max.) | IKIN (Min.) VO VITÉ Vget Vbr<br>VO VITÉ Vget Vbr<br>VO VITÉ Vget Vbr<br>VO VITÉ Vget Vbr | TV/C2IN<br>R2IN (YOUT)<br>777 777 |
| Measure-<br>ment pin   | <del>.</del>                                | <u>-</u>                                                                     |                    | 22<br>23<br>24 |                          | 24            | 5                                                                                        | 21                                                                                       | 32                                |
| Measurement conditions | 60Hz – 50Hz<br>∆VEWdc = VEWdc2 – VEWdc1     | ΔVEWp-p     60Hz/50Hz       ΔVEWp-p = (VEWdc2 - VEWdc20)/       VEWp-p × 100 |                    |                | P ON = 0                 |               | R CUTOFF = Fh<br>G CUTOFF = Fh<br>B CUTOFF = Fh<br>IIK = (Vrrf - V0)/4k                  | R CUTOFF = 0h<br>G CUTOFF = 0h<br>B CUTOFF = 0h<br>IIKmin/IIKmax                         | YUV OUT = 1<br>Vy = V1 – V0       |
| Symbol                 | ΔVEWdc                                      | ΔVEWp-p                                                                      |                    | VRBLK          | VGBLK                    |               |                                                                                          | AllK                                                                                     | ٧y                                |
| ltem                   | EW DRIVE output<br>center voltage<br>(60Hz) | EW DRIVE output<br>amplitude<br>(60Hz)                                       | Signal block items | R BLK voltage  | G BLK voltage            | B BLK voltage | IK current (Max.)                                                                        | IK current (Min.)                                                                        | Luminance (Y) output              |
| No.                    | 19                                          | 20                                                                           | Sign               | 21             | 22                       | 23            | 24                                                                                       | 25                                                                                       | 26                                |


| Unit                   | <del>8</del>                                                                                                                                   | ><br>E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ><br>E                                            | ><br>E                                 |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------|
| Мах.                   | <u>ט</u>                                                                                                                                       | -350                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 910                                               | 1200                                   |
| Typ.                   | 13.5                                                                                                                                           | -400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 800                                               | 1040                                   |
| Min.                   | 5                                                                                                                                              | -450                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 690                                               | 880                                    |
| Measurement contents   | TV/C2IN<br>ROUT<br>GOUT<br>BOUT<br>BOUT<br>BOUT<br>T<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M<br>M | TV/C2IN<br>TT/L2IN<br>ROUT<br>22H 23H 24H 25H 26H 27H<br>22H 23H 24H 25H 26H 27H<br>Muh<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT<br>COUT | TV/C2IN B-Y R-Y R-Y R-Y R-Y R-Y R-Y R-Y R-Y R-Y R | B2IN (B-YOUT)                          |
| Measure-<br>ment pin   | 22, 23, 24                                                                                                                                     | 22, 23, 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31                                                | 06                                     |
| Measurement conditions | ΔG <sub>R</sub> = 20 × log ((VR1 – VR0)/Vy)<br>ΔG <sub>G</sub> = 20 × log ((VG1 – VG0)/Vy)<br>ΔG <sub>B</sub> = 20 × log ((VB1 – VB0)/Vy)      | ΔGR = 20 × log ((VR1 – VR0)/Vy)<br>ΔG6 = 20 × log ((VG1 – VG0)/Vy)<br>ΔG8 = 20 × log ((VB1 – VB0)/Vy)<br>ΔG8 = 20 × log ((VB1 – VB0)/Vy)<br>GC8 = 20 × log ((VB1 – VB0)/Vy)<br>GC8 = 20 × log ((VB1 – VB0)/Vy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                   | SECAM signal (75%)<br>Vb-y = Vb1 – Vb0 |
| Symbol                 | QG                                                                                                                                             | ∆G<br>Vbrt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                   |                                        |
| ltem                   | RGB amplitude ratio                                                                                                                            | RGB BRIGHT voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SECAM color difference<br>(R-Y) output            | SECAM color difference<br>(B-Y) output |
| No.                    | 27                                                                                                                                             | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50                                                | 30                                     |

| Unit                   | > m                                                                          | >m            | Deg                                                                                           | >                       | ><br>E     |
|------------------------|------------------------------------------------------------------------------|---------------|-----------------------------------------------------------------------------------------------|-------------------------|------------|
| Max.                   | 1100                                                                         | 570           | ۵                                                                                             | 5.8                     | 1300       |
| Typ.                   | 1000                                                                         | 500           | 0                                                                                             | 2.3                     | 006        |
| Min.                   | 006                                                                          | 430           | φ<br>I                                                                                        | 1.8                     | 500        |
| Measurement contents   | TV/C2IN<br>400mVp-p<br>odeg<br>0deg<br>====================================  | B2IN (B-YOUT) | TV/C2IN 400mVP-P 700mVP-P 90deg 90deg 90deg 82IN (B-YOUT) Vb01 Vb01 Vb11 Vb1                  | TV/C2IN 3.58MHz 3.58MHz | FSCOUT     |
| Measure-<br>ment pin   | 31                                                                           | 30            | 30, 31                                                                                        | 15                      | 46         |
| Measurement conditions | PAL signal<br>Vr-y = Vr1 - Vr0<br>PAL signal<br>Vb-y = Vb1 - Vb0             |               | YUV OUT = 1, NTSC signal<br>¢offset = tan <sup>-1</sup> (4/7 × ((Vb1 – Vb0)/<br>(Vb2 – Vb0))) | 3.58MHz 700mVp-p        | FSC SW = 1 |
| Symbol                 | Vr-y                                                                         | Vb-y          | φoffset                                                                                       | ۳۷۷                     | Vfsc       |
| Item                   | PAL color difference<br>(R-Y) output<br>PAL color difference<br>(B-Y) output |               | HUE center offset                                                                             | VM output               | FSC output |
| No.                    | 31                                                                           | 32            | 33                                                                                            | 34                      | 35         |

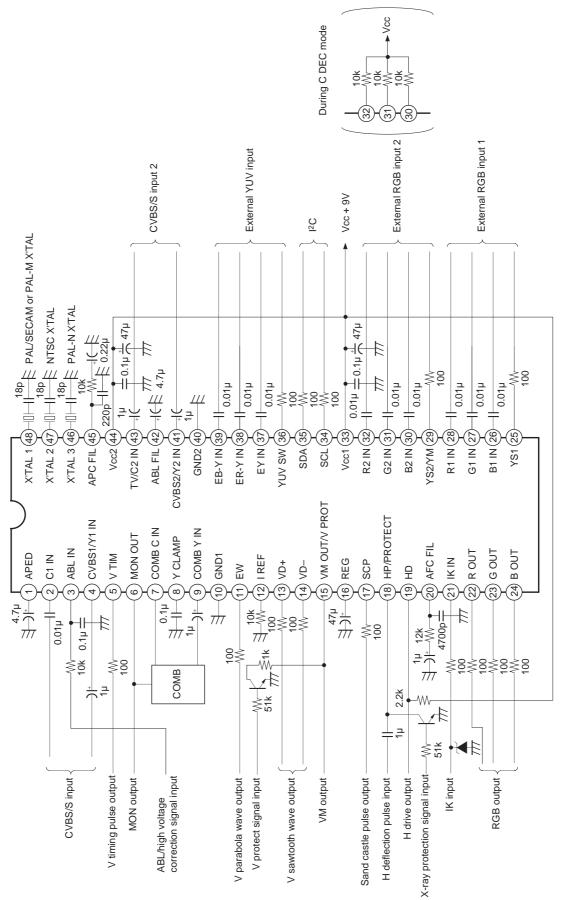








HP GEN Circuit


## Electrical Characteristics Measurement Conditions (I<sup>2</sup>C Bus Register Initial Settings)

| Register name | Number of bits | Initial setting value | Description                        |
|---------------|----------------|-----------------------|------------------------------------|
| P ON          | 1              | 1                     | RGB output ON                      |
| HD W          | 1              | 0                     | HD pulse width normal              |
| AXIS PAL      | 1              | 0                     | PAL axis forced OFF                |
| V ON          | 1              | 1                     | VD ON                              |
| FH HIGH       | 1              | 1                     | fH normal                          |
| YUV OUT       | 1              | 0                     | RGB2 IN input mode                 |
| AGING         | 1              | 0                     | AGING OFF                          |
| VIDEO SEL     | 2              | 0                     | Selects TV input                   |
| S SEL         | 2              | 0                     | Selects TV/CVBS/BLK                |
| R ON          | 1              | 1                     | R output ON                        |
| G ON          | 1              | 1                     | G output ON                        |
| B ON          | 1              | 1                     | B output ON                        |
| Y SEL         | 1              | 0                     | Enables YUVSW switching            |
| X'TAL         | 2              | 3                     | Automatically identified           |
| COL SYSTEM    | 2              | 3                     | Automatically identified           |
| COL LOOP      | 2              | 1                     | Automatically identified at 4STD   |
| C BPF         | 1              | 1                     | BPF ON                             |
| C TRAP OFF    | 1              | 0                     | TRAP ON                            |
| PICTURE       | 6              | 3Fh                   | Max. value                         |
| NO COLOR      | 1              | 0                     | No signal = NTSC                   |
| FSC SW        | 1              | 0                     | FSC OFF                            |
| COLOR         | 6              | 1Fh                   | Center value                       |
| C OFF         | 1              | 0                     | C signal ON                        |
| KILLER OFF    | 1              | 0                     | Cancels KILLER OFF forced OFF mode |
| HUE           | 6              | 1Fh                   | Center value                       |
| SHP F0        | 1              | 0                     | F0 2.5MHz                          |
| AXIS NTSC     | 1              | 0                     | NTSC JAPAN axis                    |
| BRIGHT        | 6              | 1Fh                   | Center value                       |
| DC TRAN       | 1              | 0                     | 100%                               |
| PRE/OVER      | 1              | 0                     | 1:1                                |
| SHARPNESS     | 4              | 7h                    | Center value                       |
| R CUTOFF      | 4              | 7h                    | Center value                       |
| G CUTOFF      | 4              | 7h                    | Center value                       |
| B CUTOFF      | 4              | 7h                    | Center value                       |

| Register name | Number of bits | Initial setting value | Description                                  |
|---------------|----------------|-----------------------|----------------------------------------------|
| R DRIVE       | 6              | 3Fh                   | Max. value                                   |
| ABL MODE      | 1              | 1                     | PICTURE/BRIGHT shared mode                   |
| ABL VTH       | 1              | 0                     | VTH = 3V                                     |
| G DRIVE       | 6              | 3Fh                   | Max. value                                   |
| DY COL        | 1              | 0                     | Dynamic color OFF                            |
| RGB SEL       | 1              | 0                     | Enables YS1 SW switching                     |
| B DRIVE       | 6              | 3Fh                   | Max. value                                   |
| GAMMA         | 2              | 0                     | Gamma correction OFF                         |
| H OSC         | 4              | 7h                    | Center value                                 |
| Y DELAY       | 4              | 7h                    | Center value                                 |
| FIELD FREQ    | 2              | 0                     | Automatically identified (free-running 50Hz) |
| CD MODE       | 2              | 0                     | Standard mode                                |
| INTERLACE     | 2              | 0                     | Interlace mode                               |
| H SS          | 1              | 0                     | 1/3 from sync tip                            |
| V SS          | 1              | 0                     | 1/3 from sync tip                            |
| V SIZE        | 6              | 1Fh                   | Center value                                 |
| H MASK        | 1              | 0                     | Macrovision countermeasure OFF               |
| V POSITION    | 6              | 1Fh                   | Center value                                 |
| AFC GAIN      | 2              | 1                     | Gain medium                                  |
| SCORRECTION   | 4              | 0                     | No correction                                |
| V LINEARITY   | 4              | 7h                    | 100%                                         |
| H SIZE        | 6              | 1Fh                   | Center value                                 |
| EW DC         | 1              | 0                     | DC level standard mode                       |
| H POSITION    | 6              | 1Fh                   | Center value                                 |
| PIN AMP       | 6              | 1Fh                   | Center value                                 |
| CORNER PIN    | 6              | 1Fh                   | Center value                                 |
| TRAPEZIUM     | 4              | 7h                    | Center value                                 |
| EHT COMP      | 4              | Fh                    | Max. correction level                        |
| AFC BOW       | 4              | 7h                    | Center value                                 |
| AFC ANGLE     | 4              | 7h                    | Center value                                 |
| LEFT HBLK     | 4              | 7h                    | Center value                                 |
| RIGHT HBLK    | 4              | 7h                    | Center value                                 |
| ASPECT        | 6              | 2Fh                   | Center value                                 |
| H BLK         | 1              | 0                     | H BLK width variability OFF                  |
| VUNDERSCAN    | 1              | 0                     | OFF                                          |

| Register name | Number of bits | Initial setting value | Description           |
|---------------|----------------|-----------------------|-----------------------|
| SCROLL        | 6              | 1Fh                   | Center value          |
| V ZOOM        | 1              | 0                     | Zoom OFF              |
| UPPER VLIN    | 4              | 0                     | Linearity 100%        |
| LOWER VLIN    | 4              | 0                     | Linearity 100%        |
| V TIM SEL     | 2              | 0                     | V timing pulse output |
| ID STOP       | 2              | 1                     | Center value          |
| ID START      | 2              | 2                     | Center value          |
| BELL F0       | 6              | 1Fh                   | Center value          |
| ID LEVEL      | 2              | 1                     | Center value          |





Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

## **Register Table**

#### **Sleve Address**

| Slave ADD pin = GND | 88H: Slave Receiver | 89H: Slave Transmitter |
|---------------------|---------------------|------------------------|
| Slave ADD pin = Vcc | 8AH: Slave Receiver | 8BH: Slave Transmitter |

Control Register (Sub Address 00000 results in Power-On-Reset)

|                 |                 |        |          |        | ,         |          | -        |              |  |
|-----------------|-----------------|--------|----------|--------|-----------|----------|----------|--------------|--|
| Sub Address     | Bit7            | Bit6   | Bit5     | Bit4   | Bit3      | Bit2     | Bit1     | Bit0         |  |
| x x x 0 0 0 0 0 | P ON            | HD W   | AXIS PAL | V ON   | FH HIGH   | YUV OUT  | AGING    | 0            |  |
| x x x 0 0 0 0 1 | VIDEC           | ) SEL  | SS       | SEL    | R ON      | G ON     | B ON     | Y SEL        |  |
| x x x 0 0 0 1 0 | X'T             | AL     | COL S    | YSTEM  | COL       | LOOP     | C BPF    | C TRAP OFF   |  |
| x x x 0 0 0 1 1 |                 |        | PICT     | URE    |           |          | NO COLOR | FSCSW        |  |
| x x x 0 0 1 0 0 |                 |        | CO       | LOR    |           |          | C OFF    | KILLER OFF   |  |
| x x x 0 0 1 0 1 |                 |        | н        | JE     |           |          | SHP F0   | AXIS NTSC    |  |
| x x x 0 0 1 1 0 |                 |        | BRI      | GHT    |           |          | DC TRAN  | PRE/OVER     |  |
| x x x 0 0 1 1 1 |                 | SHAR   | PNESS    |        |           | R CU     | TOFF     |              |  |
| x x x 0 1 0 0 0 |                 | G CL   | JTOFF    |        |           | B CU     | TOFF     |              |  |
| x x x 0 1 0 0 1 |                 |        | R DI     | RIVE   |           |          | ABL MODE | ABL VTH      |  |
| x x x 0 1 0 1 0 |                 |        | G D      | RIVE   |           |          | DY COL   | RGB SEL      |  |
| x x x 0 1 0 1 1 |                 |        | B DI     | RIVE   |           |          | GAMMA    |              |  |
| x x x 0 1 1 0 0 |                 | НC     | DSC      |        | Y DELAY   |          |          |              |  |
| x x x 0 1 1 0 1 | FIELD           | FREQ   | CD N     | IODE   | INTERLACE |          | H SS     | V SS         |  |
| x x x 0 1 1 1 0 |                 |        | VS       | SIZE   | 1         |          | *        | H MASK       |  |
| x x x 0 1 1 1 1 |                 |        | V POS    | SITION |           | AFC GAIN |          |              |  |
| x x x 1 0 0 0 0 |                 | S CORF | RECTION  |        |           | V LINE   | ARITY    |              |  |
| x x x 1 0 0 0 1 |                 |        | НS       | SIZE   |           |          | *        | EW DC        |  |
| x x x 1 0 0 1 0 |                 |        | H POS    | SITION |           |          | *        | *            |  |
| x x x 1 0 0 1 1 |                 |        | PIN      | AMP    |           |          | *        | *            |  |
| x x x 1 0 1 0 0 | CORNER PIN      |        |          |        |           |          | *        | *            |  |
| x x x 1 0 1 0 1 | TRAPEZIUM       |        |          |        |           | EHT      | COMP     | ·            |  |
| x x x 1 0 1 1 0 | AFC BOW         |        |          |        |           | AFC /    | ANGLE    |              |  |
| x x x 1 0 1 1 1 | LEFT HBLK RI    |        |          |        |           |          | T HBLK   |              |  |
| x x x 1 1 0 0 0 | ASPECT          |        |          |        |           |          | H BLK    | V UNDER SCAN |  |
| x x x 1 1 0 0 1 | SCROLL          |        |          |        |           |          | V ZOOM   | *            |  |
| x x x 1 1 0 1 0 | UPPER VLIN      |        |          |        |           | LOWE     | ER VLIN  |              |  |
| x x x 1 1 0 1 1 | 0 0 VTIM SEL ID |        |          |        | ID S      | TOP      | ID S     | TART         |  |
| x x x 1 1 1 0 0 | BELL F0         |        |          |        |           |          | ID L     | EVEL         |  |

# Status Register

| 1st BYTE | H LOCK | IKR      | V NG | H NG     | APC LOCK | PAL  | SECAM | FIELD ID |
|----------|--------|----------|------|----------|----------|------|-------|----------|
| 2nd BYTE | H CENT | X'TAL ID |      | NO VSYNC | RF LE    | EVEL | 0     | 1        |

## **Description of Registers**

| Register Name (Number of Bits) | Description |
|--------------------------------|-------------|
|--------------------------------|-------------|

## **1. Y Signal Block Registers**

| VIDEOSEL   | (2) | Switches the VIDEO switch to select various input signals.<br>Enabled when S SEL = 0 or 3.<br>0 = Selects TV input signal<br>1 = Selects CVBS1 input signal<br>2 = Selects CVBS2 input signal<br>3 = Mute                                                                                                                                                                   |
|------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S SEL      | (2) | <ul> <li>Selects Y/C input signals.</li> <li>Set VIDEO SEL to 3 (Mute) when S SEL is set to 1 or 2.</li> <li>0 = Selects one of TV, CVBS1 or CVBS2 input, or Mute</li> <li>1 = Selects Y1/C1 input</li> <li>2 = Selects Y2/C2 input</li> <li>3 = Selects Y/C input from comb filter (In this case, select one of TV, CVBS1 or CVBS2 input, or Mute for MON OUT.)</li> </ul> |
| C TRAP OFF | (1) | ON/OFF switch for Y block chroma trap filter<br>Set the chroma trap filter to OFF (= 1) using microcomputer control as necessary when<br>APC LOCK and SECAM status are 0.<br>0 = Trap filter ON<br>1 = Trap filter OFF                                                                                                                                                      |
| SHP F0     | (1) | Switches sharpness f0<br>0 = 2.5MHz<br>1 = 3.0MHz                                                                                                                                                                                                                                                                                                                           |
| SHARPNESS  | (4) | Sharpness gain control<br>0h = -12dB<br>7h = +3.5dB<br>Fh = +9dB                                                                                                                                                                                                                                                                                                            |
| DC TRAN    | (1) | Switches the DC transmission rate<br>0 = 100%<br>1 = 85%                                                                                                                                                                                                                                                                                                                    |
| PRE/OVER   | (1) | Sharpness preshoot/overshoot control<br>0 = 1:1<br>1 = 2:1                                                                                                                                                                                                                                                                                                                  |

| Y DELAY          | (4) | Y signal delay control<br>0h = MIN<br>Fh = MAX                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Y SEL            | (1) | <ul> <li>Internal Y signal fixed mode ON/OFF switch</li> <li>0 = YUV SW (Pin 36) standard operation (When Pin 36 = high, selects EY IN, ER-Y IN, EB-Y IN input)</li> <li>1 = EY IN (Pin 37) input only disabled (When Pin 36 = high, selects internal Y, ER-Y IN, EB-Y IN input)</li> </ul>                                                                                                                                                            |
| AGING            | (1) | <ul> <li>White output aging mode ON/OFF switch (set to 0 at power ON)</li> <li>0 = Aging mode OFF</li> <li>1 = Aging mode ON</li> <li>(The Y block outputs a 60 IRE flat signal when there is no input signal.)</li> </ul>                                                                                                                                                                                                                             |
| 2. Chroma Signal | Blo | ck Registers                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| COLOR SYSTEM     | (2) | Color system setting<br>0 = Forced PAL<br>1 = Forced SECAM<br>2 = Forced NTSC<br>3 = Automatic identification mode                                                                                                                                                                                                                                                                                                                                     |
| X'TAL            | (2) | Crystal setting<br>0 = Forced X'TAL1 (PAL/SECAM or PAL-M crystal)<br>1 = Forced X'TAL2 (NTSC crystal)<br>2 = Forced X'TAL3 (PAL-N crystal)<br>3 = Automatic identification mode                                                                                                                                                                                                                                                                        |
| COLOR LOOP       | (2) | <ul> <li>Identification loop setting in color system automatic identification mode</li> <li>0 = Automatically identifies the three systems PAL, SECAM and NTSC 4.43 (one crystal: 4.43 MHz)</li> <li>1 = Automatically identifies the four systems PAL, SECAM, NTSC and NTSC 4.43 (two crystals: 4.43 and 3.58 MHz)</li> <li>2 = Automatically identifies the three systems PAL-M, PAL-N, and NTSC (three crystals)</li> <li>3 = Do not use</li> </ul> |
| HUE              | (6) | Hue control (Phase control for the chroma demodulation axis. Enabled for NTSC only.)<br>$0h = -35^{\circ}$<br>$3Fh = +35^{\circ}$                                                                                                                                                                                                                                                                                                                      |

| COLOR      | (6) Color gain control<br>0h = -30dB  or less<br>1Fh = 0dB<br>3Fh = +6dB                                                                                                                                                                                                                                                                                                            |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| COFF       | <ul> <li>(1) Chroma signal ON/OFF switch</li> <li>0 = Chroma signal ON</li> <li>1 = Chroma signal OFF</li> </ul>                                                                                                                                                                                                                                                                    |
| FSC SW     | <ul> <li>(1) FSC signal ON/OFF switch</li> <li>0 = FSC OFF: used as crystal pin</li> <li>1 = FSC ON: outputs 700mVp-p FSC</li> </ul>                                                                                                                                                                                                                                                |
| C BPF      | <ul> <li>(1) Chroma band pass filter ON/OFF switch</li> <li>0 = Band pass filter OFF</li> <li>1 = Band pass filter ON</li> </ul>                                                                                                                                                                                                                                                    |
| AXIS NTSC  | <ul> <li>(1) In NTSC mode, this switch selects Japan axis or US axis color detection axis.<br/>This is valid when AXIS PAL = 0.<br/>(This is automatically switched to PAL/SECAM detection axis in PAL/SECAM mode.)</li> <li>0 = Set to Japan axis<br/>B-Y: 0°/1, R-Y: 95°/0.78, G-Y: 236°/0.33</li> <li>1 = Set to US axis<br/>B-Y: 0°/1, R-Y: 102°/0.78, G-Y: 236°/0.3</li> </ul> |
| AXIS PAL   | <ul> <li>(1) Switch for forcing the color detection axis to an orthogonal axis (PAL axis)</li> <li>0 = Forced OFF</li> <li>1 = Orthogonal axis forced ON</li> <li>B-Y: 0°/1, R-Y: 90°/0.57, G-Y: 227°/0.34</li> </ul>                                                                                                                                                               |
| NO COLOR   | <ul> <li>(1) This switch switches the no signal definition for the chroma signal in the PAL (/NTSC) status register.</li> <li>0 = PAL status register is 1 when there is no signal</li> <li>1 = PAL status register is 0 when there is no signal</li> </ul>                                                                                                                         |
| YUV OUT    | <ul> <li>(1) This switch switches the R2 IN, G2 IN and B2 IN input pins (Pins 32, 31 and 30) to the Y and color difference signal output pins.</li> <li>0 = R2 IN, G2 IN and B2 IN signal input mode</li> <li>1 = Pin 30: B-Y output</li> <li>Pin 31: R-Y output</li> <li>Pin 32: Y output (At this time, connect each pin to Vcc via a 10kΩ resistor.)</li> </ul>                  |
| KILLER OFF | <ul> <li>(1) Color killer ON/OFF switch</li> <li>0 = Color killer standard mode</li> <li>1 = Color killer forced OFF mode</li> </ul>                                                                                                                                                                                                                                                |

# SONY

| ID START          | (2)   | The position at which the SECAM identification pulse starts can be changed.<br>(0.2µs/STEP)<br>0 = Delayed 0.4µs to center position.<br>2 = Center<br>3 = Advanced 0.2µs to center position.                                                                                                                                                                                                                                          |
|-------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID STOP           | (2)   | The position at which the SECAM identification pulse stops can be changed.<br>(0.2µs/STEP)<br>0 = Delayed 0.2µs to center position.<br>1 = Center<br>3 = Advanced 0.4µs to center position.<br>SECAM identification performance can be optimized by adjusting these together with<br>the ID LEVEL register.<br>Color is more easily applied when the identification pulse width is wide and less easily<br>applied when it is narrow. |
| BELL F0           | (6)   | BELL Filter f0 adjustment (0.7%/STEP)<br>0h = f0 - 16%<br>1Fh = f0 center<br>3Fh = f0 + 16%                                                                                                                                                                                                                                                                                                                                           |
| ID LEVEL          | (2)   | SECAM identification level setting<br>SECAM identification performance can be optimized by adjusting this together with ID<br>START/STOP registers.<br>0 = Color is less easily applied<br>3 = Color is easily applied                                                                                                                                                                                                                |
| 3. RGB Signal Blo | ock l | Registers                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PICTURE           | (6)   | Picture gain control<br>0h = -15dB<br>3Fh = 0dB (During 0.7Vp-p input: RGB output 3.0Vp-p, gamma OFF, DRIVE MAX)                                                                                                                                                                                                                                                                                                                      |
| BRIGHT            | (6)   | Brightness control (RGB DC bias control)<br>0h = -30 IRE to center<br>1Fh = -12 IRE to reference pulse<br>3Fh = +30 IRE to center (100 IRE = 2.4Vp-p)                                                                                                                                                                                                                                                                                 |
| R DRIVE           | (6)   | R output drive control<br>0h = 1.5Vp-p<br>3Fh = 3.0Vp-p (PICTURE: MAX)                                                                                                                                                                                                                                                                                                                                                                |
| G DRIVE           | (6)   | G output drive control<br>0h = 1.5Vp-p<br>3Fh = 3.0Vp-p (PICTURE: MAX)<br>-28 -                                                                                                                                                                                                                                                                                                                                                       |

| B DRIVE                          | (6) B output drive control<br>0h = 1.5Vp-p<br>3Fh = 3.0Vp-p (PICTURE: MAX)                                                                                                                                                       |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| R CUTOFF<br>G CUTOFF<br>B CUTOFF | <ul> <li>(4) RGB output cutoff control</li> <li>(4) (Input current of reference pulse excluding leak component)</li> <li>(4) 0h = 6.5μA<br/>7h = 13μA<br/>Fh = 19μA</li> </ul>                                                   |
| GAMMA                            | <ul> <li>(2) RGB output gamma correction control</li> <li>0 = Gamma correction OFF</li> <li>3 = +12 IRE correction to 40 IRE input (PICTURE: MAX)</li> </ul>                                                                     |
| ABL MODE                         | <ul> <li>(1) Switches ABL mode</li> <li>0 = Mode in which only picture ABL functions</li> <li>1 = Mode for both picture ABL and bright ABL</li> </ul>                                                                            |
| ABL VTH                          | <ul> <li>(1) Switch for switching ABL control signal detection level (VTH)</li> <li>0 = VTH: 3V</li> <li>1 = VTH: 1V</li> </ul>                                                                                                  |
| DYNAMIC C                        | <ul> <li>(1) Dynamic color function ON/OFF switch</li> <li>0 = Dynamic color OFF</li> <li>1 = Dynamic color ON</li> </ul>                                                                                                        |
| RGB SEL                          | <ul> <li>(1) Disables switching of the YS1 switch and disallows input of external signals from RGB1.</li> <li>0 = YS1 standard mode</li> <li>1 = YS1 forced OFF mode</li> </ul>                                                  |
| PON                              | <ul> <li>(1) Switch for blanking all RGB output signals including the AKB reference pulse (set to 0 at power ON)</li> <li>0 = RGB output blanking (AKB reference pulse is also not output)</li> <li>1 = RGB output ON</li> </ul> |
| R ON                             | <ul> <li>(1) Switch for blanking the R output signal not including the AKB reference pulse</li> <li>0 = R output blanking</li> <li>1 = R output ON</li> </ul>                                                                    |
| G ON                             | <ul> <li>(1) Switch for blanking the G output signal not including the AKB reference pulse</li> <li>0 = G output blanking</li> <li>1 = G output ON</li> </ul>                                                                    |

| B ON               | (1)   | Switch for blanking the B output signal not including the AKB reference pulse<br>0 = B output blanking<br>1 = B output ON                                                                                                                                                                                                                                                           |
|--------------------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4. Deflection Bloc | ck Ro | egisters                                                                                                                                                                                                                                                                                                                                                                            |
| H OSC              | (4)   | H VCO oscillation frequency adjustment (40Hz/STEP)<br>0h = Low<br>Fh = High                                                                                                                                                                                                                                                                                                         |
| V SS               | (1)   | Switches the slice level for vertical sync signal separation<br>0 = 1/3 (from sync tip)<br>1 = 1/4 (from sync tip)                                                                                                                                                                                                                                                                  |
| H MASK             | (1)   | Macrovision countermeasure ON/OFF<br>0 = OFF<br>1 = ON                                                                                                                                                                                                                                                                                                                              |
| HSS                | (1)   | Switches the slice level for horizontal sync signal separation<br>0 = 1/3 (from sync tip)<br>1 = 1/4 (from sync tip)                                                                                                                                                                                                                                                                |
| VTIM SEL           | (2)   | Selects the signal output on the VTIM pin (Pin 5).<br>0 = V retrace timing pulse<br>1 = Horizontal sync signal<br>2 = Vertical sync separation signal<br>3 = Do not use                                                                                                                                                                                                             |
| CD MODE            | (2)   | <ul> <li>V countdown system mode switching</li> <li>0 = Standard mode (used during RF signal input)</li> <li>1 = Mode where time constant used during countdown mode switching has been lowered from standard mode (used during VCR signal input)</li> <li>2 = Fixed wide window mode This setting is recommended when shortening the lock time.</li> <li>3 = Do not use</li> </ul> |
| FIELD FREQ         | (2)   | Sets the V frequency mode<br>0 = Automatic identification mode (selects 50Hz when there is no signal)<br>1 = Automatic identification mode (selects 60Hz when there is no signal)<br>2 = Forced 50Hz<br>3 = Forced 60Hz                                                                                                                                                             |

| INTERLACE  | (2) | Switches interlace/non-interlace mode<br>0, 1 = Interlace mode<br>2 = Non-interlace mode (even fields are shifted +1/2H)<br>3 = Non-interlace mode (odd fields are shifted +1/2H)                                                                                                                                                        |
|------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AFC GAIN   | (2) | AFC loop gain control (PLL for H sync and H VCO)<br>0 = Gain high<br>1 = Gain medium<br>2 = Gain low<br>3 = Gain minimum                                                                                                                                                                                                                 |
| H POSITION | (6) | Horizontal picture position adjustment (HAFC phase control)<br>0h = 2µs delay (right picture position: picture delayed to HD)<br>3Fh = 2µs advance (left picture position: picture advanced to HD)                                                                                                                                       |
| AFC BOW    | (4) | Vertical line bow compensation amount adjustment<br>(phase control using HAFC parabola wave)<br>0h = Top and bottom of picture delayed 380ns to picture center<br>7h = Center<br>Fh = Top and bottom of picture advanced 380ns to picture center                                                                                         |
| AFC ANGLE  | (4) | <ul> <li>Vertical line slope compensation amount adjustment</li> <li>(phase control using HAFC VSAW)</li> <li>0h = Top of picture delayed 320ns and bottom of picture advanced 320ns to picture center</li> <li>7h = Center</li> <li>Fh = Top of picture advanced 320ns and bottom of picture delayed 320ns to picture center</li> </ul> |
| LEFT HBLK  | (4) | Controls the BLK width on the left side of the picture when HBLK = 1<br>$0h = +1.2\mu$ s: HBLK max. width<br>7h = Center<br>$Fh = -1.2\mu$ s: HBLK min. width                                                                                                                                                                            |
| RIGHT HBLK | (4) | Controls the BLK width on the right side of the picture when HBLK = 1<br>0h = +1.2 $\mu$ s: HBLK max. width<br>7h = Center<br>Fh = -1.2 $\mu$ s: HBLK min. width                                                                                                                                                                         |
| HBLK       | (1) | HBLK width control switch when a 16:9 CRT is in 4:3 soft normal mode<br>0 = Control OFF<br>1 = Control ON                                                                                                                                                                                                                                |

# SONY

| FH HI        | (1) | Increases the free-running frequency of the H oscillation frequency 1kHz.<br>(ON mode set at power ON)<br>0 = Max. frequency mode ON<br>1 = Max. frequency mode OFF (standard free-running frequency)                                                 |
|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HD W         | (1) | <ul> <li>HD pulse width switch (set to 0 at power ON)</li> <li>0 = Standard mode (25µs pulse width)</li> <li>1 = Narrow pulse width mode (use this mode when the time between the HD rising edge and FBP rising edge is short)</li> </ul>             |
| V SIZE       | (6) | Vertical picture size adjustment (VD output gain control)<br>0h = -15% (min. size)<br>1Fh = 0%<br>3Fh = +15% (max. size)                                                                                                                              |
| V POSITION   | (6) | Vertical picture position adjustment (DC bias control for VD output)<br>0h = -0.1V (lowers picture position)<br>1Fh = 0V (center 3V DC)<br>3Fh = +0.1V (raises picture position)                                                                      |
| S CORRECTION | (4) | Vertical S distortion correction amount adjustment<br>(gain control for secondary component of VD)<br>0h = Secondary component amplitude added to the VD signal is 0mVp-p<br>Fh = Secondary component amplitude added to the VD signal is 100mVp-p    |
| V LINEALITY  | (4) | Vertical linearity adjustment (gain control for secondary component of VD)<br>0h = 85% (picture bottom/picture top) picture top enlarged<br>1Fh = 100% (picture bottom/picture top)<br>3Fh = 115% (picture bottom/picture top) picture top compressed |
| EHT COMP     | (4) | High-voltage fluctuation compensation setting for vertical picture size<br>(gain control for VD output)<br>0h = 0%<br>Fh = -5% (max. compensation)                                                                                                    |
| V ON         | (1) | VD output ON/OFF switch (set to 0 at power ON)<br>0 = DC voltage<br>1 = Sawtooth wave                                                                                                                                                                 |
| H SIZE       | (6) | Horizontal picture size adjustment (DC bias control for EW output)<br>0Fh = -0.5V (small horizontal picture size)<br>1Fh = 0V (center 4V DC)<br>3Fh = +0.5V (large horizontal picture size)                                                           |

# SONY

| PIN AMP      | (6) | Horizontal pin distortion compensation amount adjustment<br>(gain control for V parabola wave)<br>0h = 0.15Vp-p (large horizontal size at picture top and bottom: min. compensation)<br>1Fh = 0.7Vp-p<br>3Fh = 1.3Vp-p (small horizontal size at picture top and bottom: max. compensation)  |
|--------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CORNER PIN   | (6) | Picture top and bottom pin distortion compensation amount adjustment<br>(top/bottom gain control for V parabola wave)<br>0h = -0.4V (small horizontal size at picture top and bottom: max. compensation)<br>3Fh = +0.4V (large horizontal size at picture top and bottom: min. compensation) |
| TRAPEZIUM    | (4) | Horizontal trapezium distortion amount compensation<br>(phase control for parabola wave)<br>0h = 1.5ms advance (large horizontal size at picture top: small horizontal size at bottom)<br>Fh = 1.5ms delay (small horizontal size at picture top: large horizontal size at bottom)           |
| ASPECT       | (6) | Aspect ratio control (gain control for sawtooth wave)<br>0h = 75% 16:9 CRT Full<br>2Fh = 100% 4:3 CRT Full<br>3Fh = 110%                                                                                                                                                                     |
| SCROLL       | (6) | Vertical picture scroll control when a 16:9 CRT is in zoom mode<br>0h = Scrolls 32H toward picture bottom and zooms picture bottom<br>1Fh = Center<br>3Fh = Scrolls 32H toward picture top and zooms picture top                                                                             |
| UPPER VLIN   | (4) | Adjusts vertical linearity of picture top.<br>0h = 100% (picture top/picture bottom)<br>1Fh = 85% (picture top/picture bottom, picture top size is compressed)                                                                                                                               |
| LOWER VLIN   | (4) | Adjusts vertical linearity of picture bottom.<br>0h = 100% (picture bottom/picture top)<br>1Fh = 75% (picture bottom/picture top, picture bottom size is compressed)                                                                                                                         |
| V UNDER SCAN | (1) | This mode is for compressing the vertical sawtooth wave.<br>0 = OFF<br>1 = ON<br>Compressed to 50% when ASPECT = 0h<br>Compressed to 75% when ASPECT = 3Fh<br>RGB vertical blanking is increased by 10H at both top and bottom at this time.                                                 |
| V ZOOM       | (1) | Zoom mode ON/OFF switch for 16:9 CRTs<br>0 = Zoom OFF<br>1 = Zoom ON (Top and bottom of picture are together cut 25% when ASPECT = 2Fh.<br>RGB output also undergoes blanking during this interval.)                                                                                         |

| EW DC             | <ul> <li>This mode lowers the DC level of the V parabola wave when 4:3 deflection is used for a 16:9 CRT.</li> <li>0 = OFF</li> <li>1 = ON (DC level lowered) It is necessary at this time to readjust for pin distortion when EWDC = 0 is used for the picture distortion compensation.</li> </ul> |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5. Status Registe |                                                                                                                                                                                                                                                                                                     |
| H LOCK            | <ul> <li>Lock status for H Sync and H VCO</li> <li>0 = Free-running status</li> <li>1 = H Sync and H VCO are locked</li> </ul>                                                                                                                                                                      |
| IKR               | <ul> <li>AKB operation status</li> <li>0 = AKB loop not stable</li> <li>1 = AKB loop stable</li> </ul>                                                                                                                                                                                              |
| V NG              | <ul> <li>V protect status</li> <li>0 = V protect OFF (IC normal operation status)</li> <li>1 = V protect ON (RGB output undergoes complete blanking at this time)</li> </ul>                                                                                                                        |
| H NG              | <ul> <li>X-ray protect status</li> <li>0 = H drive output ON</li> <li>1 = H drive output OFF (HD output is high impedance at this time and RGB output undergoes blanking. It is necessary to turn the IC's power OFF then ON again to cancel this status.)</li> </ul>                               |
| APC LOCK          | <ul> <li>Lock status for input chroma signal and APC for PAL/NTSC</li> <li>0 = APC not locked         <ul> <li>(Color killer when APC LOCK = 0 and SECAM = 0)</li> </ul> </li> <li>1 = APC locked</li> </ul>                                                                                        |
| PAL               | <ul> <li>PAL identification status</li> <li>When NO COLOR = 0</li> <li>0 = NTSC</li> <li>1 = PAL or NO SIG (KILLER ID ON)</li> <li>When NO COLOR = 1</li> <li>0 = NTSC or NO SIG (KILLER ID ON)</li> <li>1 = PAL</li> </ul>                                                                         |
| SECAM             | <ul> <li>SECAM identification status</li> <li>0 = Identified as not SECAM</li> <li>(Color killer when APC LOCK = 0 and SECAM = 0)</li> <li>1 = Identified as SECAM</li> </ul>                                                                                                                       |

| FIELD ID | <ul> <li>(1) V drive oscillation frequency</li> <li>0 = 60Hz mode</li> <li>1 = 50Hz mode</li> </ul>                                                                                                                                                                                                     |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H CENT   | <ul> <li>(1) H VCO status</li> <li>0 = The H VCO oscillation frequency is higher than the horizontal frequency of the input signal selected by the VIDEO SW</li> <li>1 = The H VCO oscillation frequency is lower than the horizontal frequency of the input signal selected by the VIDEO SW</li> </ul> |
| X'TAL ID | <ul> <li>(2) Crystal selection status</li> <li>0 = Identified as X'TAL1 (Pin 48 crystal)</li> <li>1 = Identified as X'TAL2 (Pin 47 crystal)</li> <li>2 = Identified as X'TAL3 (Pin 46 crystal)</li> </ul>                                                                                               |
| NO VSYNC | <ul> <li>(1) VSS presence status</li> <li>Weak electromagnetic field detection can be performed according to RF LEVEL status.</li> <li>0 = VSS present</li> <li>1 = VSS not present</li> </ul>                                                                                                          |
| RF LEVEL | <ul> <li>(2) RF weak electromagnetic field level</li> <li>0 = Strong electromagnetic field</li> <li>1 = Medium electromagnetic field</li> <li>2 = Weak electromagnetic field</li> <li>3 = Very weak electromagnetic field</li> </ul>                                                                    |

## I<sup>2</sup>C Bus Power-On Initial Settings

The initial settings listed here for power-on when V drive starts to oscillate are reference values; the actual settings may be determined as needed according to the conditions under which the set is to be used.

### **Register Table**

"\*": Undefined

#### **Control Registers**

| Sub Address           | Bit7 | Bit6 | Bit5 | Bit4 | Bit3 | Bit2 | Bit1 | Bit0 |
|-----------------------|------|------|------|------|------|------|------|------|
| xxx00000 00 h         | 0    | 0    | 0    | 1    | 1    | 0    | 0    | 0    |
| xxx00001 01 h         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| xxx00010 02 h         | 1    | 1    | 1    | 1    | 0    | 1    | 1    | 0    |
| xxx00011 03 h         | 1    | 1    | 1    | 1    | 1    | 1    | 0    | 0    |
| xxx00100 04 h         | 0    | 1    | 1    | 1    | 1    | 1    | 0    | 0    |
| xxx00101 05 h         | 0    | 1    | 1    | 1    | 1    | 1    | 0    | 0    |
| xxx00110 06 h         | 0    | 1    | 1    | 1    | 1    | 1    | 0    | 0    |
| xxx00111 07 h         | 0    | 1    | 1    | 1    | 0    | 1    | 1    | 1    |
| xxx01000 08 h         | 0    | 1    | 1    | 1    | 0    | 1    | 1    | 1    |
| xxx01001 09 h         | 0    | 1    | 1    | 1    | 1    | 1    | 1    | 0    |
| xxx01010 0A h         | 0    | 1    | 1    | 1    | 1    | 1    | 0    | 0    |
| xxx01011 0B h         | 0    | 1    | 1    | 1    | 1    | 1    | 0    | 0    |
| xxx01100 0C h         | 0    | 1    | 1    | 1    | 0    | 1    | 1    | 1    |
| xxx01101 0D h         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| xxx01110 0E h         | 0    | 1    | 1    | 1    | 1    | 1    | *    | 0    |
| xxx01111 0F h         | 0    | 1    | 1    | 1    | 1    | 1    | 0    | 1    |
| xxx10000 10 h         | 0    | 1    | 1    | 1    | 0    | 1    | 1    | 1    |
| xxx10001 11 h         | 0    | 1    | 1    | 1    | 1    | 1    | *    | 0    |
| xxx10010 12 h         | 0    | 1    | 1    | 1    | 1    | 1    | *    | *    |
| xxx10011 13 h         | 0    | 1    | 1    | 1    | 1    | 1    | *    | *    |
| xxx10100 14 h         | 0    | 1    | 1    | 1    | 1    | 1    | *    | *    |
| xxx10101 15 h         | 0    | 1    | 1    | 1    | 0    | 1    | 1    | 1    |
| xxx10110 16 h         | 0    | 1    | 1    | 1    | 0    | 1    | 1    | 1    |
| xxx10111 17 h         | 0    | 1    | 1    | 1    | 0    | 1    | 1    | 1    |
| xxx11000 18 h         | 1    | 0    | 1    | 1    | 1    | 1    | 0    | 0    |
| x x x 1 1 0 0 1 19 h  | 0    | 1    | 1    | 1    | 1    | 1    | 0    | *    |
| x x x 1 1 0 1 0 1 A h | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| xxx11011 1B h         | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 0    |
| x x x 1 1 1 0 0 1 C h | 0    | 1    | 1    | 1    | 1    | 1    | 0    | 1    |

# **Description of Operation**

#### 1. Power-On Sequence

The CXA2060BS does not have an internal power-on sequence. Therefore, all power-on sequences are controlled by the set microcomputer (I<sup>2</sup>C bus controller).

### (1) Power-on

The IC is reset and the RGB outputs are all blanked. H drive starts to oscillate, but oscillation is at the maximum frequency (16kHz or more) and is not synchronized with the input signal in order to prevent FBT (flyback transformer for generating high voltage) H squealing. Output of vertical signal V TIM starts, but V drive is DC output. Bus registers which are set by power-on reset are as follows.

P ON = 0: RGB all blanked ON
HD W = 0: Normal mode
V ON = 0: V output stopped mode
FH HIGH = 0: H oscillator maximum frequency mode
AGING = 0: All white output aging mode OFF
YUV OUT = 0

## (2) Bus register data transfer

The register setting sequence differs according to the set sequence. Register settings for the following sequence are shown as an example.

| Set sequence        | CXA2060BS register settings                                                             |
|---------------------|-----------------------------------------------------------------------------------------|
| Power-on            | Reset status in (1) above.                                                              |
| $\downarrow$        | $\downarrow$                                                                            |
| Degauss             | Reset status in (1) above.                                                              |
|                     | The CRT is degaussed in a completely darkened condition.                                |
| $\downarrow$        | $\downarrow$                                                                            |
| V drive oscillation | The IC is set to the power-on initial settings. (See the following page.)               |
|                     | A sawtooth wave is output to V drive and the IC waits for the vertical deflection to    |
|                     | stabilize. The H drive oscillator frequency goes to the standard frequency.             |
| $\downarrow$        | $\downarrow$                                                                            |
| AKB operation start | R ON, G ON and B ON are set to 0. P ON is set to 1 and a reference pulse is             |
|                     | output from RGBOUT.                                                                     |
|                     | Then, the IC waits for the cathode to warm up and the beam current to start flowing.    |
| $\downarrow$        | $\downarrow$                                                                            |
| AKB loop stable     | Status register IKR is monitored.                                                       |
|                     | IKR = 0: Unstable                                                                       |
|                     | IKR = 1: Stable                                                                         |
|                     | Note that the time until IKR = 1 is returned differs according to the initial status of |
|                     | the cathode.                                                                            |
|                     | Also note that the time until IKR = 1 results may differ from the actual time until the |
|                     | cathode current stabilizes. It is recommended that video output start after IKR = 1     |
|                     | has been established for 1 or 2 seconds.                                                |
| $\downarrow$        | $\downarrow$                                                                            |
| Video output        | R ON, G ON and B ON are set to 1 and the video signal is output from RGBOUT.<br>-37 -   |

# (3) Power-on initial settings

The initial settings listed here for power-on when V drive starts to oscillate are reference values; the actual settings may be determined as needed according to the conditions under which the set is to be used.

| P ON       | = 0   | RGB all blanked                                               |
|------------|-------|---------------------------------------------------------------|
| HD W       | = 0   | Normal                                                        |
| AXIS PAL   | = 0   | PAL axis forced OFF                                           |
| V ON       | = 1   | V drive oscillation                                           |
| FH HIGH    | = 1   | H oscillation frequency standard                              |
| YUV OUT    | = 0   | R2 IN/G2 IN/B2 IN signal input mode                           |
| AGING      | = 0   | Aging Mode OFF                                                |
| VIDEO SEL  | = 0   | TV signal input (User)                                        |
| S SEL      | = 0   | TV/CVBS1/CVBS2 input or Mute selection (User)                 |
| R ON       | = 0   | Rch video output blanked                                      |
| G ON       | = 0   | Gch video output blanked                                      |
| B ON       | = 0   | Bch video output blanked                                      |
| Y SEL      | = 0   | YUV SW standard operation                                     |
| X'TAL      | = 3   | AUTO                                                          |
| COL SYSTEM | = 3   | AUTO                                                          |
| COL LOOP   | = 1   | Automatic identification for PAL/SECAM/NTSC/NTSC4.43          |
| C BPF      | = 1   | C BPF ON                                                      |
| C TRAP OFF | = 0   | C TRAP ON                                                     |
| PICTURE    | = 3Fh | MAX (User Control)                                            |
| NO COLOR   | = 0   | PAL identification output to status (when there is no signal) |
| FSC SW     | = 0   | FSC OFF                                                       |
| COLOR      | = 1Fh | Center (User Control)                                         |
| C OFF      | = 0   | Chroma signal ON                                              |
| KILLER OFF | = 0   | Color killer normal mode                                      |
| HUE        | = 1Fh | Center (User Control)                                         |
| SHP F0     | = 0   | 2.5MHz                                                        |
| AXIS NTSC  | = 0   | Japan axis                                                    |
| BRIGHT     | = 1Fh | Center (User Control)                                         |
| DC TRAN    | = 0   | 100%                                                          |
| PRE/OVER   | = 0   | Sharpness Pre/Over ratio 1:1                                  |
| SHARPNESS  | = 7h  | Center (User Control)                                         |
| R CUTOFF   | = 7h  | Center (Adjust)                                               |
| G CUTOFF   | = 7h  | Center (Adjust)                                               |
| B CUTOFF   | = 7h  | Center (Adjust)                                               |
| R DRIVE    | = 1Fh | Center (Adjust)                                               |
| ABL MODE   | = 1   | Picture ABL/Bright ABL combination mode                       |
| ABL VTH    | = 0   | Vth = 3V                                                      |
| G DRIVE    | = 1Fh | Center (Adjust)                                               |
| DY COL     | = 0   | Dynamic Color OFF                                             |
| RGB SEL    | = 0   | YS1 SW normal mode                                            |
| B DRIVE    | = 1Fh | Center (Adjust)                                               |
| GAMMA      | = 0   | Gamma OFF                                                     |
| H OSC      | = 7h  | Center (Adjust)                                               |
| Y DELAY    | = 7h  | Center (Adjust)                                               |
| FIELD FREQ | = 0   | AUTO                                                          |
| CD MODE    | = 0   | Normal                                                        |

(Power-on initial settings continued)

| INTERLACE    | = 0   | Interlace Mode                  |
|--------------|-------|---------------------------------|
| H SS         | = 0   | Slice level 1/3 (from sync tip) |
| V SS         | = 0   | Slice level 1/3 (from sync tip) |
| V SIZE       | = 1Fh | Center (Adjust)                 |
| H MASK       | = 0   | Macrovision countermeasure OFF  |
| V POSITION   | = 1Fh | Center (Adjust)                 |
| AFC GAIN     | = 1   | Gain medium                     |
| S CORRECTION | = 7h  | Center (Adjust)                 |
| V LINEALITY  | = 7h  | Center (Adjust)                 |
| H SIZE       | = 1Fh | Center (Adjust)                 |
| EW DC        | = 0   | OFF                             |
| H POSITION   | = 1Fh | Center (Adjust)                 |
| PIN AMP      | = 1Fh | Center (Adjust)                 |
| CORNER PIN   | = 1Fh | Center (Adjust)                 |
| TRAPEZIUM    | = 7h  | Center (Adjust)                 |
| EHT COMP     | = 7h  | Center (Adjust)                 |
| AFC BOW      | = 7h  | Center (Adjust)                 |
| AFC ANGLE    | = 7h  | Center (Adjust)                 |
| LEFT HBLK    | = 7h  | HBLK width min.                 |
| RIGHT HBLK   | = 7h  | HBLK width min.                 |
| ASPECT       | = 2Fh | 100%                            |
| HBLK         | = 0   | Control OFF                     |
| V UNDER SCAN | = 0   | OFF                             |
| SCROLL       | = 1Fh | Center (User Control)           |
| V ZOOM       | = 0   | Zoom OFF                        |
| UPPER VLIN   | = 0h  | 100% (No compression)           |
| LOWER VLIN   | = 0h  | 100% (No compression)           |
| VTIM SEL     | = 0   | V retrace pulse timing pulse    |
| ID STOP      | = 1   | Center                          |
| ID START     | = 2   | Center                          |
| BELL F0      | = 1Fh | Center                          |
| ID LEVEL     | = 1   | Center                          |
|              |       |                                 |

# 2. Various Mode Settings

The CXA2060BS contains bus registers for deflection compensation which can be set for various wide modes. Wide mode setting registers can be used separately from registers for normal picture distortion adjustment, and once picture distortion adjustment has been performed in full mode, wide mode settings can be made simply by changing the corresponding register.

- Vertical picture distortion adjustment registers
  - V SIZE, V POSITION, S CORRECTION, V LINEARITY
- Horizontal picture distortion adjustment registers

H SIZE, EW DC, PIN AMP, CORNER PIN, TRAPEZIUM, AFC BOW, AFC ANGLE, H POSITION • Wide mode setting registers

LEFT HBLK, RIGHT HBLK, ASPECT, HBLK, V UNDER SCAN, SCROLL, V ZOOM, UPPER VLIN, LOWER VLIN

# Various mode settings

| Setting | CRT size | Soft size                    | Mode name                                  | I <sup>2</sup> C bus register                                                                                                                                                                                         |  |  |
|---------|----------|------------------------------|--------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 1)-1    | 16:9     | 16:9                         | Full                                       | Standard value for 16:9 CRTs                                                                                                                                                                                          |  |  |
| 1)-2    | 16:9     | 4:3                          | 4:3 Wide full Standard value for 16:9 CRTs |                                                                                                                                                                                                                       |  |  |
| 2)      | 16:9     | 4:3<br>16:9                  | Normal                                     | ASPECT=0h: V size 75%HBLK=1: HBLK width adjustment ONLEFT HBLK=AdjustmentRIGHT HBLK =AdjustmentPIN AMP=AdjustmentEW DC=1                                                                                              |  |  |
| 3)      | 16:9     | 4:3                          | Zoom                                       | ASPECT= 2Fh: V size 100%V ZOOM= 1: Zoom ON (V size limited to 75%)SCROLL= 0h: Zoom bottom of picture<br>1Fh: Zoom center of picture<br>3Fh: Zoom top of picture                                                       |  |  |
| 4)      | 16:9     | 4:3<br>(16:9 +<br>subtitles) | Subtitle-in                                | ASPECT = 2Fh: V size 100%<br>UP VLIN = Adjustment: Top of picture slightly<br>compressed<br>LO VLIN = Adjustment: Bottom of picture greatly<br>compressed<br>V ZOOM = 1: V size limited to 75%<br>SCROLL = Adjustment |  |  |
| 5)      | 16:9     | 4:3                          | Split screen mode                          | V UNDER SCAN = 1: Compressed                                                                                                                                                                                          |  |  |
| 6)      | 16:9     | 4:3                          | Wide zoom                                  | ASPECT= Adjustment: V size 90%UP VLIN= AdjustmentLO VLIN= Adjustment(S CORR= Adjustment)                                                                                                                              |  |  |
| 7)      | 4:3      | 4:3                          | 4:3 normal                                 | Standard value for 4:3 CRTs                                                                                                                                                                                           |  |  |
| 8)      | 4:3      | 16:9                         | V compression                              | ASPECT = Adjustment<br>V UNDER SCAN = 1: V size 80%<br>(Compressed to a total of 75%)                                                                                                                                 |  |  |

\* Since the amount of compensation for distortion in the vertical position of a CRT does not change due to the above modes, it is possible to use initial values for all screen distortion registers.

Mode examples are given below. The 570 actual number of scanning lines displayed under PAL (480 lines for NTSC) will be used in the description. Data stored in the wide mode setting registers is also given. Note that actual adjustment values may differ slightly due to variations among different ICs. Standard setting data differs for 16:9 CRTs and 4:3 CRTs.

(Standard value)

| Register     | 16:9 CRT | 4:3 CRT |
|--------------|----------|---------|
|              | Oh       |         |
| ASPECT       | 0h       | 2Fh     |
| SCROLL       | 1Fh      | 1Fh     |
| V ZOOM       | 1        | 0       |
| UPPER VLIN   | 0h       | 0h      |
| LOWER VLIN   | 0h       | 0h      |
| V UNDER SCAN | 1 0      | 0       |
| HBLK         | 0        | 0       |
| LEFT HBLK    | 7h       | 7h      |
| RIGHT HBLK   | 7h       | 7h      |
|              |          |         |

## 1) Full mode

This mode reproduces the full 570 (NTSC: 480) lines on a 16:9 CRT. Normal 4:3 images are compressed vertically, but in the case of a squeezed video source which compresses 16:9 images to 4:3 images, 16:9 images are reproduced in their original 16:9 aspect ratio. The register settings are the 16:9 CRT standard values.

#### 2) Normal mode

In this mode, 4:3 images are reproduced without modification on a 16:9 CRT. A black border appears at the left and right of the picture.

In this mode, the H deflection size must be compressed by 25% compared to full mode.

The CXA2060BS performs compression with a register (EW DC) that compresses the H size.

Because excessive current flows to the horizontal deflection circuit in this case, adequate consideration must be given to the allowable power dissipation, etc., of the horizontal deflection coil in the design of the set. In addition, this concern can also be addressed through measures taken external to the IC, such as switching the horizontal deflection coil.

Full mode should be used when performing memory processing to add a black border to the video signal.

H blanking of the image normally uses the flyback pulse input from HP/PROTECT (Pin 18). However, the blanking width can be varied according to the control register setting when blanking is insufficient for the right and left black borders.

Change the following three settings with respect to the 16:9 CRT standard values for the register settings.

HBLK = 1

LEFT HBLK = Adjustment value

RIGHT HBLK = Adjustment value

The H angle of deflection decreases, causing it to differ from the PIN compensation amount during H size full status. Therefore, in addition to the wide mode registers, PIN AMP must also be readjusted only for this mode.

## 3) Zoom mode

In this mode, 4:3 images are reproduced on a 16:9 CRT by enlarging the picture without other modification. The top and bottom of normal 4:3 images are lost, but almost the entire picture can be reproduced for vista size video software, etc. which already has black borders at the top and bottom. Setting the ASPECT register to 2Fh (100%) allows zooming to be performed for 4:3 images without distortion. In this case, the number of scanning lines is reduced to 430 lines compared to 570 lines for full mode. The zooming position can be shifted vertically by the SCROLL register.

V blanking of the image normally begins from V sync and continues for 2H after the AKB reference pulse, but the top and bottom parts which are lost are also blanked during this mode.

Adjust the following two registers with respect to the 16:9 CRT standard values for the register settings.

ASPECT = 2Fh SCROLL = 1Fh or user control

## 4) Subtitle-in mode

When Cinema Scope images which have black borders at the top and bottom of the picture are merely enlarged with the zoom mode in 3) above, the subtitles present in the black borders may be lost. Therefore, this mode is used to super-compress only the subtitle part and reproduce it on the display.

Add the LOWER VLIN adjustment to the zoom mode settings for the register settings.

ASPECT = 2Fh SCROLL = 1Fh or user control LOWER VLIN = Adjustment value

LOWER VLIN causes the linearity at the bottom of the picture to deteriorate. Therefore, UPPER VLIN should also be adjusted if the top and bottom of the picture are to be made symmetrical. Since the picture is compressed vertically, the number of scanning lines exceeds 430 lines.

# 5) Two-picture mode

This mode is used to reproduce two 4:3 video displays on a 16:9 CRT such as for P and P.

To achieve this, the V size must be further compressed from the condition where ASPECT = 0 (V size 75%: full mode). This IC performs this compression with V UNDER SCAN.

16:9 CRT standard values are used with only V UNDER SCAN changed to 1 for the register settings.

V UNDER SCAN = 1

# 6) Wide zoom mode

This mode reproduces 4:3 video software naturally on wide displays by enlarging 4:3 images without other modification and compressing the parts of the image which protrude from the picture into the top and bottom parts of the picture. The display enlargement ratio is controlled by ASPECT, and the compression ratios at the top and bottom of the picture are controlled by UPPER VLIN and LOWER VLIN.

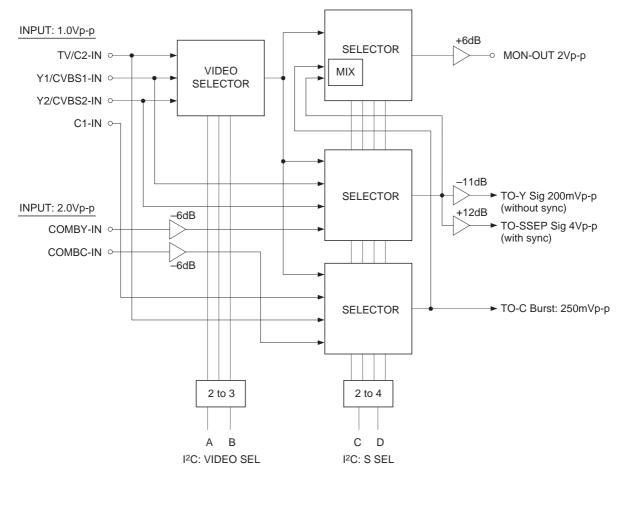
Adjust the following three registers with respect to the 16:9 CRT standard values for the register settings.

ASPECT = Adjustment value UPPER VLIN = Adjustment value LOWER VLIN = Adjustment value

# 7) 4:3 CRT normal mode

This is the standard mode for 4:3 CRTs. The register settings are the 4:3 CRT standard values.

# 8) V compression mode


This mode is used to reproduce M-N converter output consisting of 16:9 images expanded to 4:3 aspect ratio and other squeezed signals without distortion on a 4:3 CRT. In this case, the V size must be compressed to 75%. This is done using V UNDER SCAN in 5) above.

Setting V UNDER SCAN to ON compresses the V size to 75%. Fine adjustment of the V size is possible by adding the ASPECT adjustment.

4:3 CRT standard values are used with the ASPECT and V UNDER SCAN settings changed for the register settings.

ASPECT = Adjustment V UNDER SCAN = 1

## **VIDEO SW**



| A | В | С | D | TO-Y  | то-с  | MON-OUT |
|---|---|---|---|-------|-------|---------|
| 0 | 0 | 0 | 0 | ΤV    | ΤV    | TV      |
| 0 | 1 | 0 | 0 | CVBS1 | CVBS1 | CVBS1   |
| 1 | 0 | 0 | 0 | CVBS2 | CVBS2 | CVBS2   |
| 1 | 1 | 0 | 0 | NOSIG | NOSIG | NOSIG   |
| 1 | 1 | 0 | 1 | Y1    | C1    | Y1 + C1 |
| 1 | 1 | 1 | 0 | Y2    | C2    | Y2 + C2 |
| 0 | 0 | 1 | 1 | COMBY | COMBC | TV      |
| 0 | 1 | 1 | 1 | COMBY | COMBC | CVBS1   |
| 1 | 0 | 1 | 1 | COMBY | COMBC | CVBS2   |
| 1 | 1 | 1 | 1 | NOSIG | NOSIG | NOSIG   |

# [Color Status]

| Input           | APC LOCK | PAL | SECAM | X'TAL ID | FIELD ID |
|-----------------|----------|-----|-------|----------|----------|
| 3.58<br>NTSC    | 1        | 0   | 0     | 01       | 0        |
| 4.43<br>NTSC    | 1        | 0   | 0     | 00       | 0        |
| PAL             | 1        | 1   | 0     | 00       | 1        |
| PAL60           | 1        | 1   | 0     | 00       | 0        |
| SECAM           | 0        | 0   | 1     | 00       | 1        |
| PAL-M           | 1        | 1   | 0     | 00       | 0        |
| PAL-N           | 1        | 1   | 0     | 10       | 1        |
| No color signal | 0        | 0   | 0     | **       | *        |

# 3. Signal Processing

The CXA2060BS consists of separate blocks for sync signal processing, H deflection signal processing, V deflection signal processing and Y/C and RGB signal processing, all controlled by an I<sup>2</sup>C bus.

### 1) Sync signal processing

The Y signal selected by the video switch is sync separated by a horizontal/vertical sync separation circuit.

A phase comparison between the horizontal sync split signal obtained and the H VCO output signal is conducted and an AFC loop is configured, and an H pulse synchronized to H sync is created within the IC. When AFC is locked to H sync, 1 is output to the status register (H LOCK). This can be used to detect the presence of a video signal.

The vertical sync split signal is sent to the V countdown block and V deflection timing is obtained by the appropriate window processing. V cycle timing such as the AKB reference pulse is generated using this V timing pulse.

The V retrace timing pulse and sync split signal are output on V TIM (Pin 5) according to the V TIMSEL register setting.

#### 2) H deflection signal processing

A phase comparison is conducted between the H pulse obtained from sync processing and the H deflection pulse input on Pin 18 (HP/PROTECT) and the horizontal position of the picture displayed on the CRT is controlled by controlling the phase of H drive output. The compensation signal created using the vertical sawtooth wave is superimposed and vertical picture distortion compensation is also performed.

The H deflection pulse is used for H blanking of the video signal. If the width of the H deflection pulse is narrow, a pulse created by the IC can be added and the result used as the H blanking pulse (HBLK).

Although Pin 18 is for normal pulse input, the pin is kept lowered to near GND level, H drive output is stopped and 1 is output to the status register (H NG). It is necessary to turn the IC's power OFF and ON again in order to cancel this status.

#### 3) V deflection signal processing

The vertical sawtooth wave oscillates in sync with the V timing pulse cycle output by the countdown. After wide deflection processing is added to this sawtooth wave, it undergoes picture distortion adjustment by the function circuits V drive and EW drive, respectively, and the result is output as the V drive and EW drive signals.

# 4) Y signal processing

The Y/CVBS signal selected by the video switch is sent to the Y signal processing circuit.

The Y signal is sent to the RGB signal processing circuit via a trap filter for eliminating the chroma signal, a delay line, sharpness control, clamp, and black expansion circuits. In addition, the output of the Y signal processing circuit can be monitored using Pin 32 (R2 IN) by setting register YUV OUT to 1. (At this time, be sure to connect a  $10k\Omega$  resistor to Vcc as a load for Pin 32.)

Also, a differential waveform of the Y signal synchronized with YOUT (RGB OUT) is output from Pin 15 as VM OUT.

When the CVBS signal is selected, set the C TRAP OFF register to 0 (trap filter ON), and when the Y signal split from Y/C separation is selected, set this register to 1 (trap filter OFF).

The internal filter f0 is adjusted automatically within the IC. Since the filter f0 does not settle down while the color killer is operating, be sure to set the trap filter to OFF if it is an obstacle.

# 5) C signal processing

The TV, CVBS or chroma (PAL, NTSC) signals (specified input: burst level 300mVp-p) selected by the Video SW pass through an ACC, chroma band-pass filter, chroma amplifier, and demodulation circuit to form the color difference signals R-Y and B-Y. After being processed by 1HDL the signals are input to the RGB signal processing circuit.

The output signals (color difference signals) of this C signal processing circuit can be monitored, just like Y output, using Pin 30 (B2 IN) and Pin 31 (G2 IN) by setting the register YUV OUT to 1. B-Y is output from Pin 30 (B2 IN) and R-Y is output from Pin 31 (G2 IN). (At this time, be sure to connect a  $10k\Omega$  resistor to Vcc as a load for Pins 30 and 31.)

The color killer is activated when the burst level falls –36dB or more below the specified input.

The SECAM signal (specified input: R-YID: 215mVp-p, B-YID: 167mVp-p) passes through an ACC, bell filter, limiter amplifier, demodulation circuit, line blanking circuit, and de-emphasis circuit to form the color difference signals R-Y and B-Y. After being processed by 1HDL the signals are input to the RGB signal processing circuit.

In addition, the color system (PAL, NTSC or SECAM) and sub-carrier frequency (4.43MHz or 3.58MHz) are automatically identified according to the input chroma signal. Circuits such as the internal VCO, demodulation circuit and color axis circuit of the RGB signal processing block (described below) are automatically adjusted. The system is selected either automatically by the I<sup>2</sup>C bus (COL SYSTEM and X'TAL) or by forcible modes.

The color system status selected using the status registers NTSC/PAL, SECAM and X'TAL ID is output (refer to the color status table).

# 6) RGB signal processing

The Y and color difference signals obtained by the Y/C signal processing circuit are first input to the YUV SW, then selected and switched with the external Y and color difference signals. After the selected Y and color difference signals are used to form the G-Y signal in the next axis circuit (including color control), they are used for the RGB signals.

Next, these signals pass through the external RGB signal SW circuits YS1 SW and YM SW (half-tone SW), external RGB signal SW circuit YS2 SW, dynamic color, picture control, gamma correction, clamp, brightness control, drive control, and cutoff control circuits, and are then output on Pin 22 (ROUT), Pin 23 (GOUT), and Pin 24 (BOUT).

An external RGB signal (100 IRE 100% white: 0.7Vp-p) conforming to normal video signal specifications is input to Pins 26, 27 and 28 and Pins 30, 31 and 32.

The voltage added to Pin 3 (ABL IN) is compared to the reference voltage within the IC and then integrated by the capacitor connected to Pin 42 (ABL FIL) to form a control signal used for picture control and brightness control. The ABL mode can be selected using the register ABL MODE for switching such that only picture control is performed or so that both picture control and brightness control are performed. There is a protective function such that brightness control is activated even when only picture control is being performed if beam current flows excessively.

This IC includes two functions for performing white balance and black balance adjustments: drive control for performing gain adjustment between RGB outputs and cutoff control for performing DC level adjustments between RGB outputs. These can be independently controlled for three channels by the I<sup>2</sup>C bus. In addition to this, the cutoff control function also includes an auto-cutoff function (AKB) which performs automatic adjustment by forming a loop between the IC and CRT. This can compensate for temporal variations of the CRT.

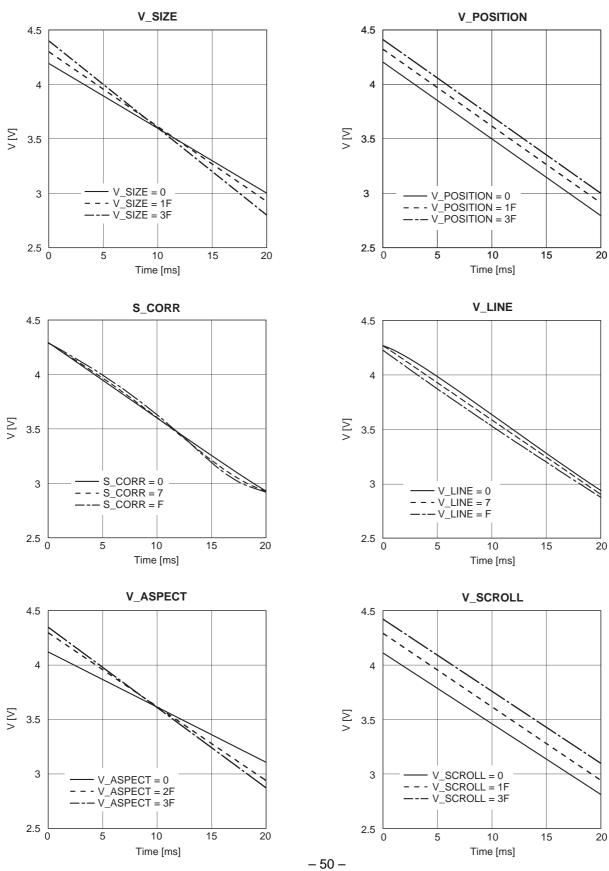
Auto-cutoff functions are as follows.

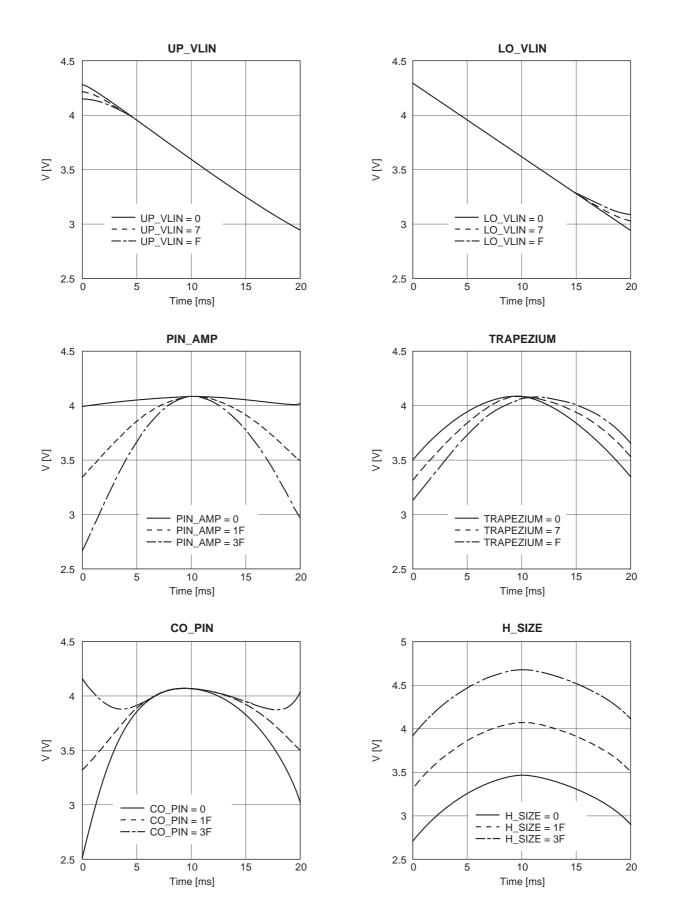
- R, G, and B reference pulses for auto cutoff, shifted 1H each in the order mentioned, appear at the top of the picture (actually, in the overscan portion). The reference pulse uses 1H in the V blanking interval, and is output from each R, G and B output pin.
- The RGB cathode current (IK) is input to Pin 21 (IK IN).
- The cathode current input to Pin 21 (IK IN) is converted to a voltage within the IC. The reference pulse interval of this voltage is compared with the reference voltage within the IC, and a current generated by this voltage difference is used to charge a capacitor within the IC. This charge is held at times other than the reference pulse interval.
- The DC level of the RGB output changes according to the voltage generated by the capacitor. A loop functions to make the voltage converted from the current input to Pin 21 (IK IN) match the reference voltage within the IC.

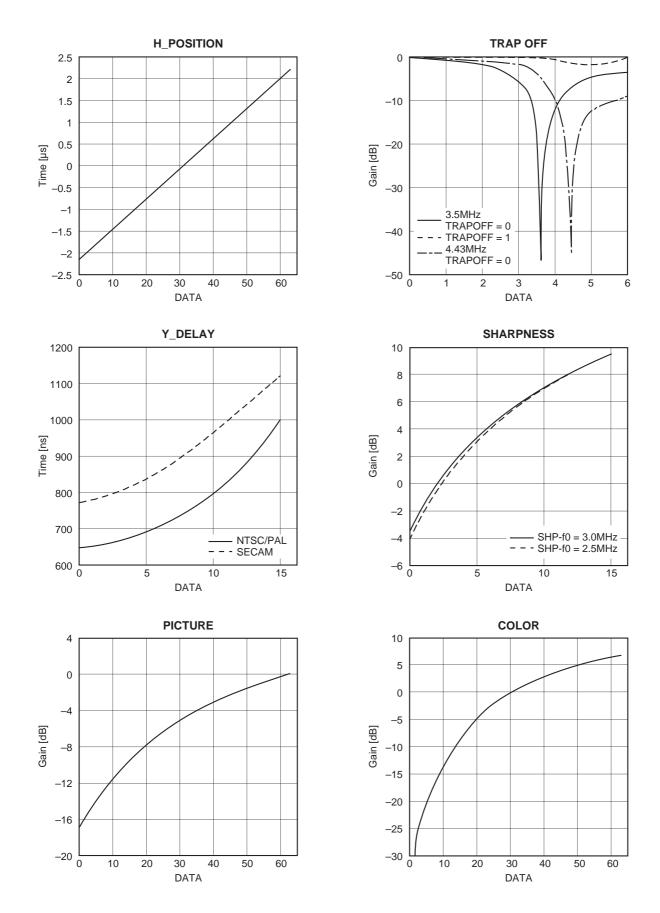
The IC internal reference voltages for R, G and B undergo cutoff control by the I<sup>2</sup>C bus and can be independently adjusted. The cathode signal current flowing during the reference pulse interval should be about 13 $\mu$ A at the cutoff control center. The IC can also handle up to 100 $\mu$ A cathode leak current flowing during blanking. Large current flows during the video interval, and this leads to destruction around IK IN, be absolutely sure to connect a zener diode of about 4V to the IK IN pin.

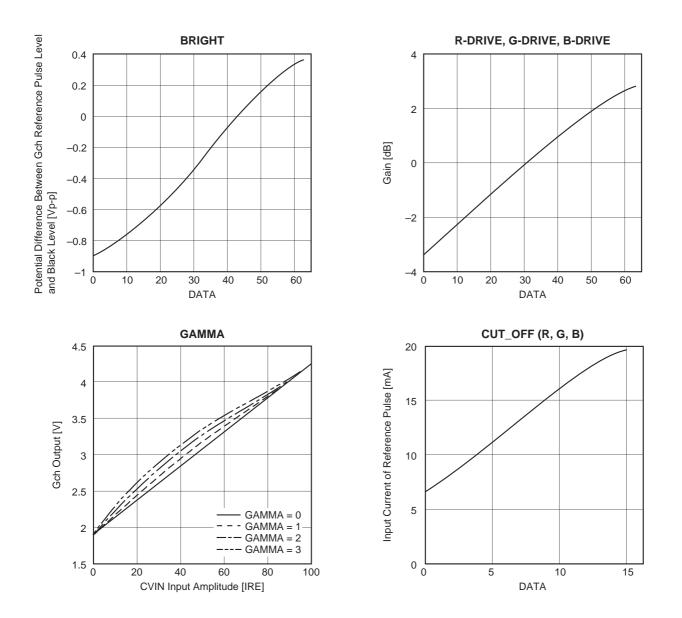
# 4. Notes on Operation

Because the R, G and B signals and deflection signals output from the CXA2060BS are DC direct connected, the pattern (set board) must be designed with consideration given to minimizing interference from around the power supply and GND. Do not separate the GND patterns for each pin; a solid earth is ideal. Locate the power supply side of the by-pass capacitor which is inserted between the power supply and GND as near to the pin as possible. Also, locate the crystal oscillator and IREF resistor as near to the pin as possible, and be sure that signal lines do not pass close to these pins. Drive the Y, external Y/color difference and external RGB signals at a sufficiently low impedance, as these signals are clamped when they are input using the capacitor connected to the input pin.


Use a resistor (such as a meal film resistor) with an error of less than 1% for the IREF pin.


Be sure that Vcc1 and Vcc2 have the same electric potential.

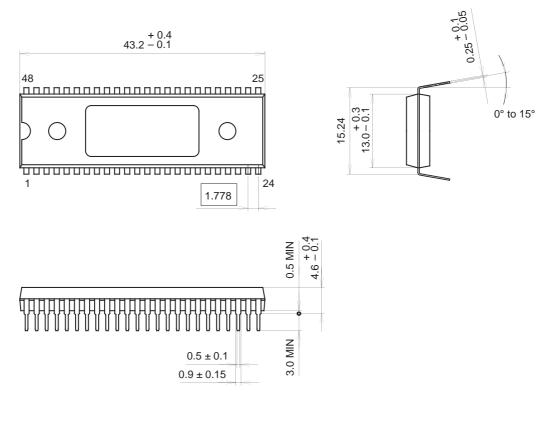

Use crystals manufactured by Daishinku Corp. Properties of this IC are not guaranteed if used with crystals from another manufacturer.


#### **Curve Data**

I<sup>2</sup>C bus data conforms to the "I<sup>2</sup>C Bus Register Initial Settings" of the Electrical Characteristics Measurement Conditions.










## Package Outline Ur

Unit: mm

48PIN SDIP (PLASTIC)



Two kinds of package surface: 1.All mat surface type. 2.Center part is mirror surface.

| SONY CODE  | SDIP-48P-02    |
|------------|----------------|
| EIAJ CODE  | SDIP048-P-0600 |
| JEDEC CODE |                |

#### PACKAGE STRUCTURE

| PACKAGE MATERIAL | EPOXY RESIN                 |
|------------------|-----------------------------|
| LEAD TREATMENT   | SOLDER/PALLADIUM<br>PLATING |
| LEAD MATERIAL    | 42/COPPER ALLOY             |
| PACKAGE MASS     | 5.1g                        |

NOTE : PALLADIUM PLATING

This product uses S-PdPPF (Sony Spec.-Palladium Pre-Plated Lead Frame).

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.