SEMICONDUCTOR

October 1987 Revised March 2002

Fan out of 2 driving 74L compatibility: or 1 driving 74LS

CD4001BC/CD4011BC Quad 2-Input NOR Buffered B Series Gate • Quad 2-Input NAND Buffered B Series Gate

General Description

The CD4001BC and CD4011BC quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

All inputs are protected against static discharge with diodes to $\rm V_{DD}$ and $\rm V_{SS}.$

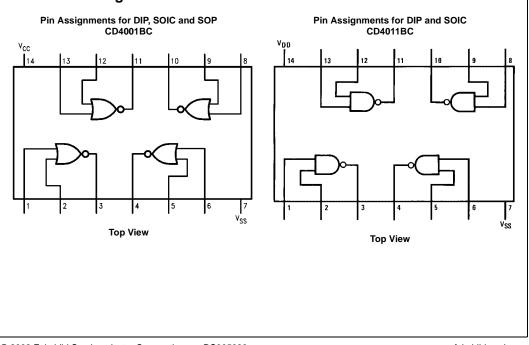
Ordering Code:

Order Number Package Number Package Description CD4001BCM M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow CD4001BCSJ 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide M14D CD4001BCN N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide CD4011BCM M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow CD4011BCN N14A 14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

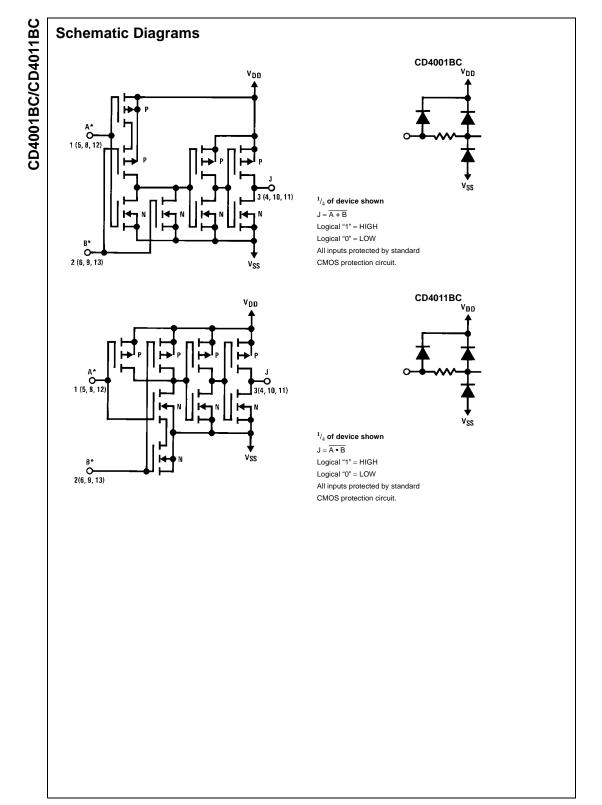
Features

■ Low power TTL:

temperature range


■ 5V-10V-15V parametric ratings

Symmetrical output characteristics


■ Maximum input leakage 1 µA at 15V over full

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Connection Diagrams

CD4001 BC/CD4011 BC Quad 2-Input NOR Buffered ω Series Gate • Quad 2-Input NAND Buffered B Series Gate

Absolute Maximum Ratings(Note 1)

(Note 2)

Recommended Operating Conditions

Voltage at any Pin	-0.5V to V _{DD} +0.5V
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
V _{DD} Range	–0.5 V_{DC} to +18 V_{DC}
Storage Temperature (T _S)	-65°C to +150°C
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Operating Range (V_{DD})
3 V_{DC} to 15 V_{DC}

Operating Temperature Range
CD4001BC, CD4011BC

CD4001BC, CD4011BC
-55°C to +125°C

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Preservice the use of the device of the de

bardy of the definition to the part of the second state of the se

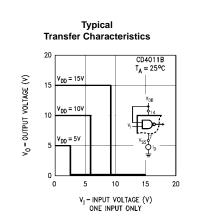
Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

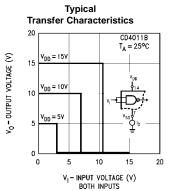
DC Electrical Characteristics (Note 2)

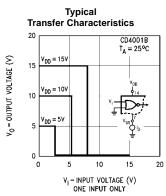
Symbol	Parameter	Conditions	–55°C			+ 25°C			+125°C	
Symbol	Parameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device	$V_{DD} = 5V$, $V_{IN} = V_{DD}$ or V_{SS}		0.25		0.004	0.25		7.5	
	Current	V_{DD} = 10V, V_{IN} = V_{DD} or V_{SS}		0.5		0.005	0.50		15	μA
		$V_{DD} = 15V$, $V_{IN} = V_{DD}$ or V_{SS}		1.0		0.006	1.0		30	
V _{OL}	LOW Level	$V_{DD} = 5V$		0.05		0	0.05		0.05	
	Output Voltage	$V_{DD} = 10V$ $ I_O < 1 \ \mu A$		0.05		0	0.05		0.05	V
		$V_{DD} = 15V$		0.05		0	0.05		0.05	
V _{OH}	HIGH Level	$V_{DD} = 5V$	4.95		4.95	5		4.95		
	Output Voltage	$V_{DD} = 10V$ $ I_O < 1 \ \mu A$	9.95		9.95	10		9.95		V
		$V_{DD} = 15V$	14.95		14.95	15		14.95		
VIL	LOW Level	$V_{DD} = 5V, V_{O} = 4.5V$		1.5		2	1.5		1.5	
	Input Voltage	$V_{DD} = 10V, V_{O} = 9.0V$		3.0		4	3.0		3.0	V
		$V_{DD} = 15V, V_{O} = 13.5V$		4.0		6	4.0		4.0	
VIH	HIGH Level	$V_{DD} = 5V, V_{O} = 0.5V$	3.5		3.5	3		3.5		
	Input Voltage	$V_{DD} = 10V, V_{O} = 1.0V$	7.0		7.0	6		7.0		V
		$V_{DD} = 15V, V_{O} = 1.5V$	11.0		11.0	9		11.0		
I _{OL}	LOW Level Output	$V_{DD} = 5V, V_{O} = 0.4V$	0.64		0.51	0.88		0.36		
	Current	$V_{DD} = 10V, V_{O} = 0.5V$	1.6		1.3	2.25		0.9		mA
	(Note 3)	$V_{DD} = 15V, V_{O} = 1.5V$	4.2		3.4	8.8		2.4		
I _{OH}	HIGH Level Output	$V_{DD} = 5V, V_{O} = 4.6V$	-0.64		-0.51	-0.88		-0.36		
	Current	$V_{DD} = 10V, V_{O} = 9.5V$	-1.6		-1.3	-2.25		-0.9		mA
	(Note 3)	$V_{DD} = 15V, V_{O} = 13.5V$	-4.2		-3.4	-8.8		-2.4		
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$		-0.10		-10 ⁻⁵	-0.10		-1.0	μA
		$V_{DD} = 15V, V_{IN} = 15V$		0.1		10 ⁻⁵	0.10		1.0	μA

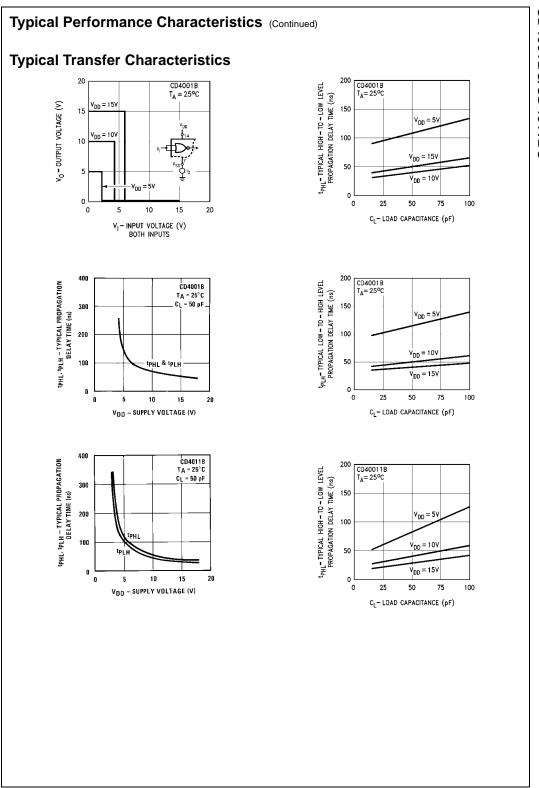
Note 3: I_{OL} and I_{OH} are tested one output at a time.

AC Electrical Characteristics (Note 4)

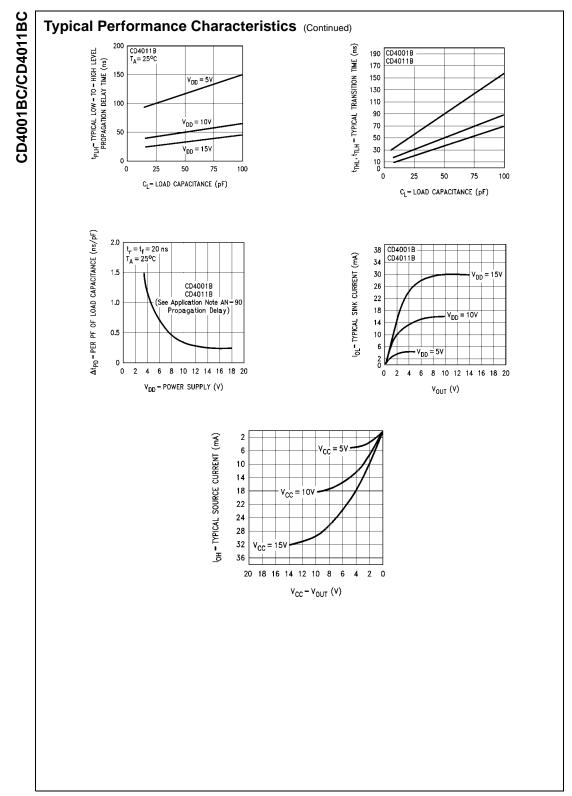

Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	120	250	
	HIGH-to-LOW Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	110	250	
	LOW-to-HIGH Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	
CIN	Average Input Capacitance	Any Input	5	7.5	pF
CPD	Power Dissipation Capacity	Any Gate	14		pF

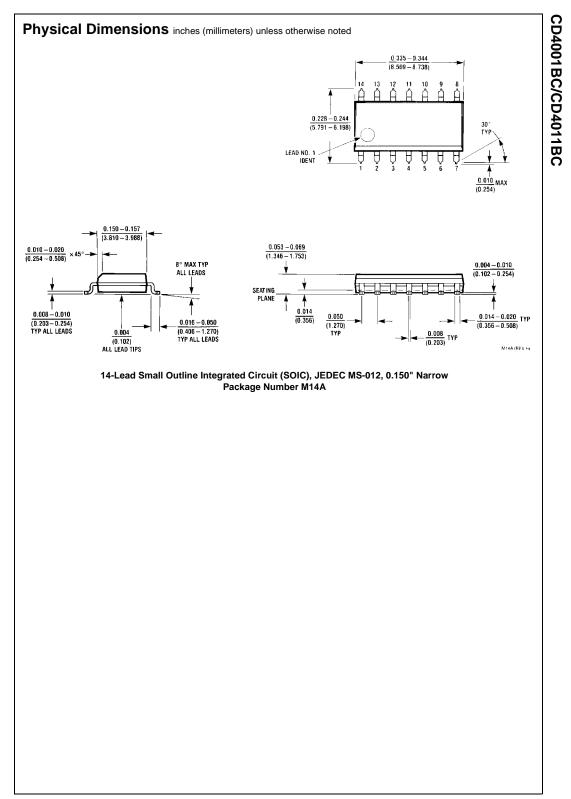

AC Electrical Characteristics (Note 5)

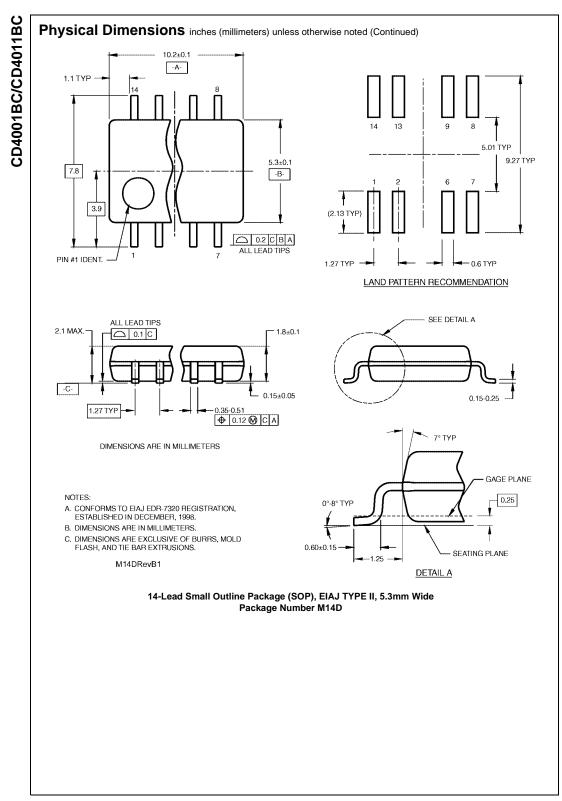

	$A = 200, mput t_{f}, t_{f} = 200, 0.000$	$C_L = 50 \text{ pF}, \text{ R}_L = 200 \text{k}.$ Typical Temperate	the coefficient is 0.5	/6/ 0.	
Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay,	$V_{DD} = 5V$	120	250	
	HIGH-to-LOW Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	
t _{PLH}	Propagation Delay,	$V_{DD} = 5V$	85	250	
	LOW-to-HIGH Level	$V_{DD} = 10V$	40	100	ns
		$V_{DD} = 15V$	30	70	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	
CIN	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	14		pF

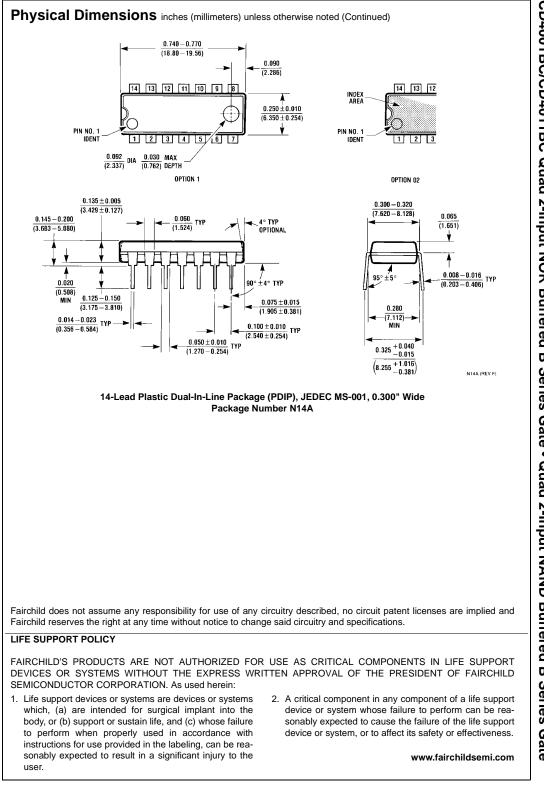

Note 5: AC Parameters are guaranteed by DC correlated testing.

Typical Performance Characteristics








CD4001 BC/CD4011BC

6

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor:

<u>CD4001BCSJ_Q</u> <u>CD4001BCSJX_Q</u> <u>CD4001BCSJX</u> <u>CD4001BCM</u> <u>CD4001BCN</u> <u>CD4001BCSJ</u> <u>CD4001BCMX</u> <u>CD4001BCN_Q</u>