

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTOR

- n HIGH VOLTAGE CAPABILITY
- n LOW SPREAD OF DYNAMIC PARAMETERS
- n MINIMUM LOT-TO-LOT SPREAD FOR RELIABLE OPERATION
- NOTE OF THE PROPERTY OF THE

APPLICATIONS

n COMPACT FLUORESCENT LAMPS (CFLS)

DESCRIPTION

The device is manufactured using High Voltage Multi Epitaxial Planar technology for high switching speeds and high voltage capability. It uses a Cellular Emitter structure with planar edge termination to enhance switching speeds while maintaining the wide RBSOA.

The STBV series is designed for use in Compact Fluorescent Lamps.

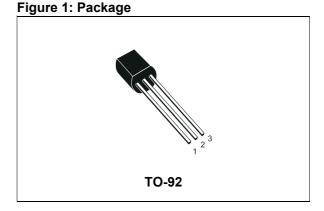
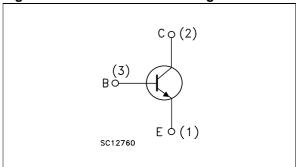



Figure 2: Internal Schematic Diagram

Table 1: Order Codes

Part Number	Marking	Package	Packaging
STBV32	BV32	TO-92	Bulk
STBV32-AP	BV32	TO-92	Ammopack

Table 2: Absolute Maximum Ratings

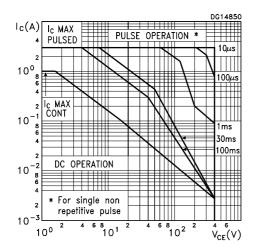
Symbol	Parameter	Value	Unit
V _{CES}	Collector-Emitter Voltage (V _{BE} = 0)	700	V
V _{CEO}	Collector-Emitter Voltage (I _B = 0)	400	V
V _{EBO}	Emitter-Base Voltage ($I_C = 0$, $I_B = 0.5 A$, $t_p < 10 ms$)	V _{(BR)EBO}	V
	Collector Current	1.5	А
I _C	(f \geq 100 Hz, duty-cycle \leq 50 %, T _C = 25 °C)		
I _{CM}	Collector Peak Current (t _p < 5ms)	3	А
I _B	Base Current	0.5	А
I _{BM}	Base Peak Current (t _p < 5ms)	1.5	А
P _{tot}	Total Dissipation at T _C = 25 °C	1.5	W

April 2005 Rev. 2

Symbol	Parameter	Value	Unit
T _{stg}	Storage Temperature	-65 to 150	°C
T _J	Max. Operating Junction Temperature	150	°C

Table 3: Thermal Data

R _{thj-case}	Thermal Resistance Junction-case	Max	83.3	°C/W
R _{thj-amb}	Thermal Resistance Junction-Ambient	Max	112	°C/W


Table 4: Electrical Characteristics ($T_{case} = 25$ °C unless otherwise specified)

Symbol	Parameter	Test Co	nditions	Min.	Тур.	Max.	Unit
I _{CEV}	Collector Cut-off Current	V _{CE} = 700 V				1	mA
	(V _{BE} = -1.5 V)	V _{CE} = 700 V	T _j =125 °C			5	mA
V _{(BR)EBO}	Emitter-Base Breakdown Voltage	I _E = 10 mA		9		18	V
	$(I_C = 0)$						
V _{CEO(sus)} *	Collector-Emitter Sustaining Voltage	I _C = 10 mA		400			V
	$(I_B = 0)$						
V _{CE(sat)} *	Collector-Emitter	I _C = 0.5 A	I _B = 100 mA			0.5	V
	Saturation Voltage	I _C = 1 A	$I_{B} = 250 \text{ mA}$			1	V
		I _C = 1.5 A	I _B = 500 mA			1.5	V
V _{BE(sat)} *	Base-Emitter Saturation	I _C = 0.5 A	I _B = 100 mA			1.0	V
	Voltage	I _C = 1 A	$I_{B} = 250 \text{ mA}$			1.2	V
h _{FE}	DC Current Gain	I _C = 0.5 A	V _{CE} = 2 V	8		35	
		I _C = 1 A	$V_{CE} = 2 V$	5		25	
	RESISTIVE LOAD	I _C = 1 A	V _{CC} = 125 V				
t _r	Rise Time	$I_{B1} = -I_{B2} = 200 \text{ mA}$	t _p = 25 μs			1	μs
t_s	Storage Time	(see figure 12)				4	μs
t _f	Fall Time					0.7	μs
	INDUCTIVE LOAD	I _C = 1 A	V _{clamp} = 300 V				
t_s	Storage Time	I _{B1} = 200 mA	$V_{BE(off)} = -5V$		8.0		μs
		L = 50 mH	$R_{BB} = 0$				
		(see figure 13)					

^{*} Pulsed: Pulsed duration = 300 μs, duty cycle ≤ 1.5 %.

2/9

Figure 3: Safe Operating Area

Figure 4: Output Characteristics

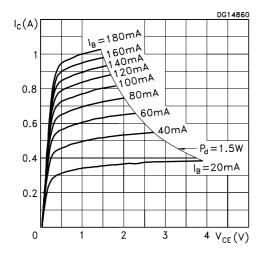


Figure 5: Base-Emitter Saturation Voltage

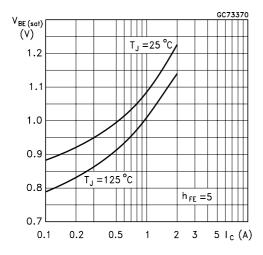


Figure 6: Derating Curve

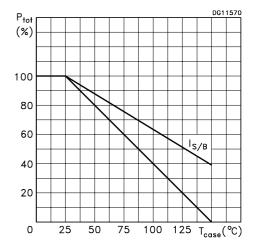


Figure 7: Collector-Emitter Saturation Voltage

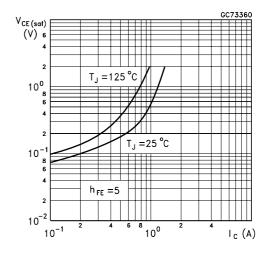


Figure 8: DC Current Gain

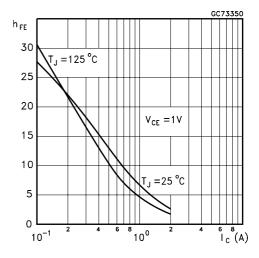


Figure 9: DC Current Gain

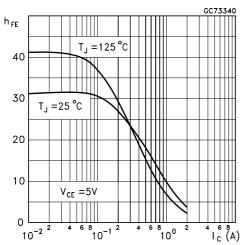


Figure 10: Reverse Biased Operating Area

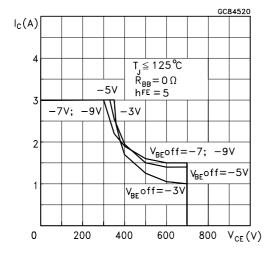
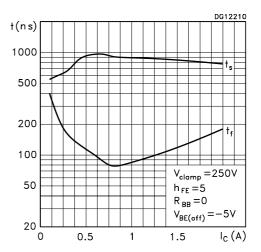
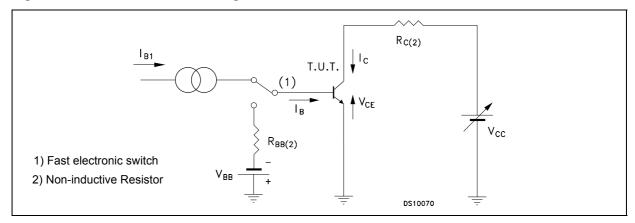
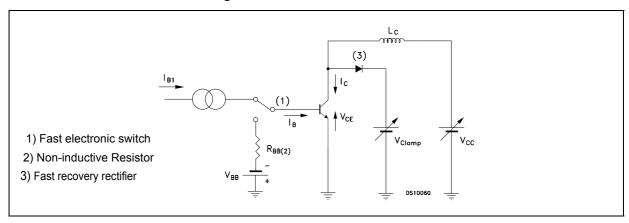




Figure 11: Inductive Load Switching Times



4/9

Figure 12: Resistive Load Switching Test Circuit

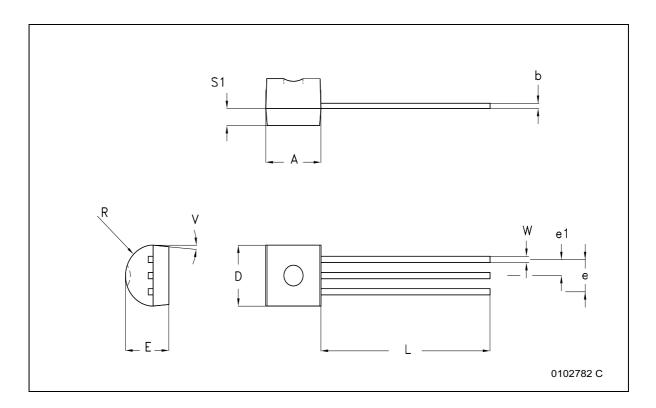
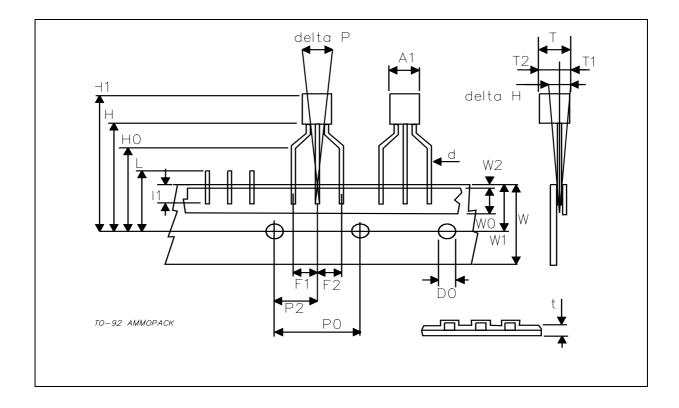


Table 13: Inductive Load Switching Test Circuit

TO-92 BULK SHIPMENT MECHANICAL DATA


DIM.	mm.					
DIWI.	MIN.	ТҮР	MAX.			
А	4.32		4.95			
b	0.36		0.51			
D	4.45		4.95			
E	3.30		3.94			
е	2.41		2.67			
e1	1.14		1.40			
L	12.70		15.49			
R	2.16		2.41			
S1	0.92		1.52			
W	0.41		0.56			
V		5 ^O				

A7/.

TO-92 AMMOPACK SHIPMENT (Suffix"-AP") MECHANICAL DATA

DIM.	mm.				
	MIN.	TYP	MAX.		
A1			4.80		
Т			3.80		
T1			1.60		
T2			2.30		
d			0.48		
P0	12.50	12.70	12.90		
P2	5.65	6.35	7.05		
F1,F2	2.44	2.54	2.94		
delta H	-2.00		2.00		
W	17.50	18.00	19.00		
W0	5.70	6.00	6.30		
W1	8.50	9.00	9.25		
W2			0.50		
Н	18.50		20.50		
H0	15.50	16.00	16.50		
H1			25.00		
D0	3.80	4.00	4.20		
t			0.90		
L			11.00		
I1	3.00				
delta P	-1.00		1.00		

STBV32

Figure 1: Revision History

Version	Release Date	Change Designator
01-Dec-2002	1	First Release.
27-Apr-2005	1	Total dissipation value has been modified.

8/9

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2005 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

