## DATA SHEET

## TDA4780

RGB video processor with automatic cut-off control and gamma adjust

Preliminary specification
Supersedes data of May 1994
File under Integrated Circuits, IC02

## RGB video processor with automatic cut-off control and gamma adjust

## FEATURES

- Gamma adjust
- Dynamic black control (adaptive black)
- All input signals clamped on black-levels
- Automatic cut-off control, alternative: output clamping on fixed levels
- Three adjustable reference voltage levels via $\mathrm{I}^{2} \mathrm{C}$-bus for automatic cut-off control
- Luminance/colour difference interface
- Two luminance input levels allowed
- Two RGB interfaces controlled by either fast switches or by $\mathrm{I}^{2} \mathrm{C}$-bus
- Two peak drive limiters, selection via $\mathrm{I}^{2} \mathrm{C}$-bus
- Blue stretch, selection via $\mathrm{I}^{2} \mathrm{C}$-bus
- Luminance output for scan velocity modulation (SCAVEM)
- Extra luminance output; same pin can be used as hue control output e.g. for the TDA4650 and TDA4655
- Non standard operations like $50 \mathrm{~Hz} / 32 \mathrm{kHz}$ are also possible
- Either 2 or 3 level sandcastle pulse applicable
- High bandwidth for 32 kHz application
- White point adjusts via $\mathrm{I}^{2} \mathrm{C}$-bus
- Average beam current and improved peak drive limiting
- Two switch-on delays to prevent discoloration during start-up
- All functions and features programmable via $\mathrm{I}^{2} \mathrm{C}$-bus
- PAL/SECAM or NTSC matrix selection.


## GENERAL DESCRIPTION

The TDA4780 is a monolithic integrated circuit with a luminance and a colour difference interface for video processing in TV receivers. Its primary function is to process the luminance and colour difference signals from a colour decoder which is equipped e.g. with the multistandard decoder TDA4655 or TDA9160 plus delay line TDA4661 or TDA4665 and the Picture Signal Improvement (PSI) IC TDA467X or from a feature module.


The required input signals are:

- Luminance and negative colour difference signals
- 2 or 3-level sandcastle pulse for internal timing pulse generation
- $I^{2} \mathrm{C}$-bus data and clock signals.

Two sets of analog RGB colour signals can also be inserted, e.g. one from a peritelevision connector (SCART plug) and the other one from an On-Screen Display (OSD) generator. The TDA4780 has $\mathrm{I}^{2} \mathrm{C}$-bus control of all parameters and functions with automatic cut-off control of the picture tube cathode currents. It provides RGB output signals for the video output stages. In clamped output mode it can also be used as an RGB source.

The main differences with the sister type TDA4680 are:

- Additional features, namely gamma adjust, adaptive black, blue stretch and two different peak drive limiters
- The measurement lines are triggered by the trailing edge of the vertical component of the sandcastle pulse
- ${ }^{2} \mathrm{C}$-bus receiver only. Automatic white level control is not provided; the white levels are determined directly by the $\mathrm{I}^{2} \mathrm{C}$-bus data.
- The TDA4780 is pin compatible (except pin 18) with the TDA4680. The $\mathrm{I}^{2} \mathrm{C}$-bus slave address can be used for both ICs. When a function of the TDA4780 is not included in the TDA4680, the $I^{2} \mathrm{C}$-bus command is not executed. Special commands (except control bit FSWL) for the TDA4680 will be ignored by the TDA4780.

RGB video processor with automatic cut-off control and gamma adjust

QUICK REFERENCE DATA

| SYMBOL | PARAMETER | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{P}}$ | supply voltage (pin 5) | 7.2 | 8.0 | 8.8 | V |
| $\mathrm{I}_{\mathrm{P}}$ | supply current (pin 5) | 80 | 100 | 120 | mA |
| $V_{8(p-p)}$ | luminance input (peak-to-peak value) (C)VBS | - | 0.45/1.43 | - | V |
| $\mathrm{V}_{6(p-p)}$ | -(B-Y) input (peak-to-peak value) | - | 1.33 | - | V |
| $\mathrm{V}_{7(p-p)}$ | -( $\mathrm{R}-\mathrm{Y}$ ) input (peak-to-peak value) | - | 1.05 | - | V |
| $\mathrm{V}_{14}$ | three-level sandcastle pulse $\begin{aligned} & \mathrm{H}+\mathrm{V} \\ & \mathrm{H} \\ & \mathrm{BK} \end{aligned}$ |  | $\begin{array}{\|l\|} \hline 2.5 \\ 4.5 \\ 8.0 \end{array}$ | - | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |
|  | two-level sandcastle pulse $\begin{aligned} & \mathrm{H}+\mathrm{V} \\ & \mathrm{BK} \end{aligned}$ | \|- | $\begin{aligned} & 2.5 \\ & 4.5 \end{aligned}$ | - | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| $\mathrm{V}_{\mathrm{i}}$ | RGB input signals at pins $2,3,4,10,11$ and 12 (black-to-white value) | - | 0.7 | - | V |
| $\mathrm{V}_{0(p-p)}$ | RGB output at pins 24, 22 and 20 (black-to-white value) | - | 2.0 | - | V |
| $\mathrm{T}_{\text {amb }}$ | operating ambient temperature | -20 | - | +70 | ${ }^{\circ} \mathrm{C}$ |

ORDERING INFORMATION

| TYPE <br> NUMBER | PACKAGE |  |  |
| :---: | :---: | :---: | :---: |
|  | NAME | DESCRIPTION | VERSION |
| TDA4780 | DIP28 | plastic dual in-line package; 28 leads (600 mil) | SOT117-1 |

RGB video processor with automatic cut-off control and gamma adjust

## BLOCK DIAGRAM



Fig. 1 Block diagram (continued in Fig.2).

RGB video processor with automatic cut-off control and gamma adjust


Fig. 2 Block diagram (continued from Fig.1).

RGB video processor with automatic cut-off control and gamma adjust

PINNING

| SYMBOL | PIN | DESCRIPTION |
| :---: | :---: | :---: |
| $\mathrm{FSW}_{2}$ | 1 | fast switch 2 input |
| $\mathrm{R}_{2}$ | 2 | red input 2 |
| $\mathrm{G}_{2}$ | 3 | green input 2 |
| $\mathrm{B}_{2}$ | 4 | blue input 2 |
| $\mathrm{V}_{P}$ | 5 | supply voltage |
| $-(B-Y)$ | 6 | colour difference input -(B-Y) |
| -(R-Y) | 7 | colour difference input -(R-Y) |
| Y | 8 | luminance input |
| GND | 9 | ground |
| $\mathrm{R}_{1}$ | 10 | red input 1 |
| $\mathrm{G}_{1}$ | 11 | green input 1 |
| $\mathrm{B}_{1}$ | 12 | blue input 1 |
| $\mathrm{FSW}_{1}$ | 13 | fast switch 1 input |
| SC | 14 | sandcastle pulse input |
| BCL | 15 | average beam current limiting input |
| $\mathrm{C}_{\text {PdL }}$ | 16 | storage capacitor for peak limiting |
| $\mathrm{C}_{\mathrm{L}}$ | 17 | storage capacitor for leakage current compensation |
| $\mathrm{C}_{\text {PDST }}$ | 18 | storage capacitor for peak dark |
| Cl | 19 | cut-off measurement input |
| $\mathrm{B}_{0}$ | 20 | blue output |
| $\mathrm{C}_{\mathrm{B}}$ | 21 | blue cut-off storage capacitor |
| $\mathrm{G}_{0}$ | 22 | green output |
| $\mathrm{C}_{\mathrm{G}}$ | 23 | green cut-off storage capacitor |
| $\mathrm{R}_{\mathrm{O}}$ | 24 | red output |
| $\mathrm{C}_{\mathrm{R}}$ | 25 | red cut-off storage capacitor |
| YHUE | 26 | Y-output/hue adjust output |
| SDA | 27 | $\mathrm{I}^{2} \mathrm{C}$-bus serial data input/acknowledge output |
| SCL | 28 | $\mathrm{I}^{2} \mathrm{C}$-bus serial clock input |



## FUNCTIONAL DESCRIPTION

## Signal input stages

The TDA4780 contains 3 sets of input signal stages for:

1. Luminance/colour-difference signals:
a) $\mathrm{Y}: 0.45 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \mathrm{VBS}$ or $1.43 \mathrm{~V}(\mathrm{p}-\mathrm{p}) \mathrm{VBS}$, selectable via $\mathrm{I}^{2} \mathrm{C}$-bus.
b) $-(R-Y): 1.05 V(p-p)$.
c) $-(B-Y): 1.33 V(p-p)$.

The capacitively coupled signals are matrixed to RGB signals by either a PAL/SECAM or NTSC matrix (selected via $\mathrm{I}^{2} \mathrm{C}$-bus).
2. $(R G B)_{1}$ signals ( $\left.0.7 \mathrm{~V}(p-p) \mathrm{VB}\right)$, capacitively coupled (e.g. from external source).
3. $(R G B)_{2}$ signals ( $\left.0.7 \mathrm{~V}(p-p) \mathrm{VB}\right)$, capacitively coupled (e.g. videotext, OSD).

All input signals are clamped in order to have the same black levels at the signal switch input. Displayed signals must be synchronous with the sandcastle pulse.

## Signal switches

Both fast signal switches can be operated by switching pins (e.g. SCART facilities) or set via the $\mathrm{I}^{2} \mathrm{C}$-bus. With the pin $\mathrm{FSW}_{1}$ the Y-CD signals or the (RGB) ${ }_{1}$ signals can be selected, with pin $\mathrm{FSW}_{2}$ the above selected signals or the $(R G B)_{2}$ signals are enabled. During the vertical and horizontal blanking time an artificial black level equal to the clamped black level is inserted in order to clip off the sync pulse of the luminance signal and to suppress hum during the cut-off measurement time and eliminate noise during these intervals.

## Saturation, contrast and brightness adjust

Saturation, contrast and brightness adjusts are controlled via the $\mathrm{I}^{2} \mathrm{C}$-bus and act on $\mathrm{Y}, \mathrm{CD}$ as well as on RGB input signals. Gamma acts on the luminance content of the input signals.

## Gamma adjust

The gamma adjust stage has a non-linear transmission characteristic according to the formula $y=x^{\text {gamma }}$, where $x$ represents the input and $y$ the output signal. If gamma is smaller than unity, the lower parts of the signal are amplified with higher gain.

## Adaptive black (ADBL)

The adaptive black stage detects the lowest voltage of the luminance component of the internal RGB signals during the scanning time and shifts it to the nominal black level. In order to keep the nominal white level the contrast is increased simultaneously.

## Blue stretch (BLST)

The blue stretch channel gets additional amplification if the blue signal is greater than $80 \%$ of the nominal signal amplitude. In the event the white point is shifted towards higher colour temperature so that white parts of a picture seem to be brighter.

## Measurement pulse and blanking stage

During the vertical and horizontal blanking time and the measurement period the signals are blanked to an ultra black level, so the leakage current of the picture tube can be measured and automatically compensated for.
During the cut-off measurement lines (one line period for each R, G or B) the output signal levels are at cut-off measurement level.

The vertical blanking period is timed by the sandcastle pulse. The measurement pulses (leakage, R, G and B) are triggered by the negative going edge of the vertical pulse of the sandcastle pulse and start after the following horizontal pulse.

The IC is prepared for $2 \mathrm{f}_{\mathrm{H}}(32 \mathrm{kHz})$ application.

## Output amplifier and white adjust potentiometer

The RGB signals are amplified to nominal $2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$, the DC-levels are shifted according to cut-off control. The nominal signal amplitude can be varied by $\pm 50 \%$ by the white point adjustment via the $\mathrm{I}^{2} \mathrm{C}$-bus (individually for RGB respect).

# RGB video processor with automatic cut-off control and gamma adjust 

## Automatic cut-off control

During leakage measurement time the leakage current is compensated in order to get a reference voltage at the cut-off measurement info pin. This compensation value is stored in an external capacitor. During cut-off current measurement times for the R, G and B channels, the voltage at this pin is compared with the reference voltage, which is individually adjustable via $\mathrm{I}^{2} \mathrm{C}$-bus for each colour channel. The control voltages that are derived in this way are stored in the external feedback capacitors. Shift stages add these voltages to the corresponding output signals. The automatic cut-off control may be disabled via the ${ }^{1}{ }^{2} \mathrm{C}$-bus. In this mode the output voltage is clamped to 2.5 V . Clamping periods are the same as the cut-off measurement periods.

## Signal limiting

The TDA4780 provides two kinds of signal limiting.
First, an average beam limiting, that reduces signal level if a certain average is exceeded. Second, a peak drive limiting, that is activated if one of the RGB signals even shortly exceeds a via ${ }^{2} \mathrm{C}$-bus adjusted threshold. The latter can be either referred to the cut-off measurement level of the outputs or to ground.
When signal limiting occurs, contrast is reduced, and at minimum contrast brightness is reduced additionally.

## Sandcastle decoder and timer

A 3-level detector separates the sandcastle pulse into combined line and field pulses, line pulses, and clamping pulses. The timer contains a line counter and controls the cut-off control measurement.

Application with a 2-level 5 V sandcastle pulse is possible.

## Switch on delay circuit

After switch on all signals are blanked and a warm up test pulse is fed to the outputs during the cut-off measurement lines. If the voltage at the cut-off measurement input exceeds an internal level the cut-off control is enabled but the signal remains still blanked. In the event of output clamping, the cut-off control is disabled and the switch on procedure will be skipped.

## Y output and hue adjust

The TDA4780 contains a D/A converter for hue adjust. The analog information can be fed, e.g. to the multistandard decoder TDA4650 or TDA4655. This output pin may be switched to a $Y$ output signal, which can be used for scan velocity modulation (SCAVEM). The Y output is the $Y$ input signal or the matrixed (RGB) input signal according to the switch position of the fast switch.

## $I^{2} \mathrm{C}$-bus

The TDA4780 contains an ${ }^{2} \mathrm{C}$-bus receiver for control function.

## ESD protection

The Pins are provided with protection diodes against ground and supply voltage (see Chapter "Internal pin configurations"). ${ }^{2}$ C-bus input pins do not shunt the $\mathrm{I}^{2} \mathrm{C}$-bus signals in the event of missing supply voltage.

## EMC

The pins are protected against electromagnetic radiation.

RGB video processor with automatic cut-off control and gamma adjust

## $I^{2} \mathrm{C}$-buS RECEIVER

Table 1 Slave address; note 1

| A6 | A5 | A4 | A3 | A2 | A1 | A0 | $\overline{\mathbf{W}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |

## Note

1. Explanation for the cell contents of the table:
a) W means write.

Table 2 Slave receiver format (write mode; BREN =0); note 1

| S | SLAVE ADDRESS | A | SUBADDRESS ${ }^{(2)}$ | A | DATA BYTE | A | P |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :--- |

## Notes

1. Explanation for the cell contents of the table:
a) S means START condition.
b) P means STOP condition.
c) A means acknowledge.
2. All subaddresses within the range 00 H to 0 FH are automatically incremented. The subaddress counter wraps around from 0 FH to 00 H . Only in this event 0 FH will be acknowledged.
Subaddresses outside the range 00 H to 0 EH are not acknowledged by the device and neither auto-increment nor any other internal operation takes place.
All eight bits of the subaddress have to be decoded by the device.
Table 3 Slave receiver format (write mode; $\operatorname{BREN}=1$ ); note 1

| S | SLAVE ADDRESS | A | SUBADDRESS | A | DATA BYTE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Notes

1. Explanation for the cell contents of the table:
a) S means START condition.
b) P means STOP condition.
c) A means acknowledge.
2. Auto-increment is not possible.

$\square$
Fig. 5 Data transmission without auto-increment (BREN $=0$ or 1 ).


Fig. 6 Data transmission with auto-increment (BREN $=0$ )

RGB video processor with automatic cut-off control and gamma adjust

Table 4 Signal input selection and effect on adaptive black measurements by fast source switches and $\mathrm{I}^{2} \mathrm{C}$-bus; note 1

| $\mathbf{1}^{2} \mathrm{C}$-BUS CONTROLLED BITS |  |  |  | ANALOG SWITCH |  | SELECTED SIGNALS |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FSON2 | FSDIS2 | FSON1 | FSDIS1 | $\begin{aligned} & \text { FSW2 } \\ & \text { (pin 1) } \end{aligned}$ | $\begin{aligned} & \text { FSW1 } \\ & \text { (pin 13) } \end{aligned}$ | $\begin{gathered} \mathrm{RGB}_{2} \\ \text { (pins 2, } 3 \\ \text { and 4) } \end{gathered}$ | ADBL | $\begin{gathered} \text { RGB }_{1} \text { (pins } 10, \\ 11 \text { and } 12 \text { ) } \end{gathered}$ | $\begin{aligned} & \text { TV (pins 6, } \\ & 7 \text { and } 8 \text { ) } \end{aligned}$ |
| L | L | L | L | L | L |  | active |  | ON |
|  |  |  |  | L | H |  | active | ON |  |
|  |  |  |  | H | X | ON | inactive |  |  |
| L | L | L | H | L | X |  | active |  | ON |
|  |  |  |  | H | X | ON | inactive |  |  |
| L | L | H | X | L | X |  | active | ON |  |
|  |  |  |  | H | X | ON | inactive |  |  |
| L | H | L | L | X | L |  | active |  | ON |
|  |  |  |  | X | H |  | active | ON |  |
| L | H | L | H | X | X |  | active |  | ON |
| L | H | H | X | X | X |  | active | ON |  |
| H | L | X | X | L | X | ON | active |  |  |
|  |  |  |  | H |  | ON | inactive |  |  |
| H | H | X | X | X | X | ON | active |  |  |

## Note

1. Explanation for the cell contents of the table:
a) $\mathrm{H}=$ set to logic 1 or analog switch (pins 1 and 13) to $>0.9 \mathrm{~V}$.
b) $L=$ set to logic 0 or analog switch (pins 1 and 13) to $<0.4 \mathrm{~V}$.
c) $X=$ don't care.
d) $\mathrm{ON}=$ this signal is selected.

RGB video processor with automatic cut-off control and gamma adjust

Table 5 Crosstalk; note 1

| FSW1 | FSW2 | CROSSTALK | AT 4 MHz MAXIMUM VALUE (dB) | AT 8 MHz MAXIMUM VALUE (dB) | AT 13 MHz MAXIMUM VALUE (dB) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| L | L | $\mathrm{RGB}_{1} \rightarrow \mathrm{Y}, \mathrm{CD}$ | -58 | -55 | -50 |
|  |  | $\mathrm{RGB}_{2} \rightarrow \mathrm{Y}, \mathrm{CD}$ | -58 | -55 | -50 |
| L | H | $\mathrm{Y}, \mathrm{CD} \rightarrow \mathrm{RGB}_{1}$ | -51 | -50 | -47 |
|  |  | $\mathrm{RGB}_{2} \rightarrow \mathrm{RGB}_{1}$ | -58 | -55 | -50 |
| L | H | $\mathrm{Y}, \mathrm{CD} \rightarrow \mathrm{RGB}_{2}$ | -51 | -50 | -47 |
|  |  | $\mathrm{RGB}_{1} \rightarrow \mathrm{RGB}_{2}$ | -58 | -55 | -50 |
| H | H | $\mathrm{Y}, \mathrm{CD} \rightarrow \mathrm{RGB}_{2}$ | -51 | -50 | -47 |
|  |  | $\mathrm{RGB}_{1} \rightarrow \mathrm{RGB}_{2}$ | -58 | -55 | -50 |

Note

1. Explanation for the cell contents of the table:
a) $\mathrm{H}=$ set to logic 1 .
b) $L=$ set to logic 0 .

Table 6 Subaddress byte and data byte format; notes 1 and 2

| FUNCTION | SUBADDRESS | DATA BYTE |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | D7 | D6 | D5 | D4 | D3 | D2 | D1 | D0 ${ }^{(3)}$ |
| Brightness | 00H | L | L | A05 | A04 | A03 | A02 | A01 | A00 |
| Saturation | 01H | L | L | A15 | A14 | A13 | A12 | A11 | A10 |
| Contrast | 02H | L | L | A25 | A24 | A23 | A22 | A21 | A20 |
| Hue | 03H | L | L | A35 | A34 | A33 | A32 | A31 | A30 |
| Red gain | 04H | L | L | A45 | A44 | A43 | A42 | A41 | A40 |
| Green gain | 05H | L | L | A55 | A54 | A53 | A52 | A51 | A50 |
| Blue gain | 06H | L | L | A65 | A64 | A63 | A62 | A61 | A60 |
| Red level reference | 07H | L | L | A75 | A74 | A73 | A72 | A71 | A70 |
| Green level reference | 08H | L | L | A85 | A84 | A83 | A82 | A81 | A80 |
| Blue level reference | 09H | L | L | A95 | A94 | A93 | A92 | A91 | A90 |
| Peak drive limit | OAH | L | L | AA5 | AA4 | AA3 | AA2 | AA1 | AA0 |
| Gamma | OBH | L | L | AB5 | AB4 | AB3 | AB2 | AB1 | AB0 |
| Control register 1 | OCH | SC5 | DELOF | BREN | X | NMEN | X | X | X |
| Control register 2 | ODH | X | HDTV | FSBL | BCOF | FSDIS2 | FSON2 | FSDIS1 | FSON1 |
| Control register 3 | OEH | ADBL | YHI | MOD2 | BLST | YEXH | RELC | TCPL | L |

## Notes

1. Explanation for the cell contents of the table:
a) $L=$ set to logic 0 .
b) X means don't care but for software compatibility with further video ICs with the same slave address, it is recommended to set all these bits to logic 0 .
2. After power on reset all alignment registers are set to 01 H .
3. The least significant bit of the analog alignment register.

## RGB video processor with automatic cut-off control and gamma adjust

Table 7 RGB processor mode bits control register

| SYMBOL | PARAMETER | CONDITIONS |
| :---: | :---: | :---: |
| Control register 1 |  |  |
| SC5 | sandcastle 5 V | 0 = 3-level sandcastle pulse |
|  |  | 1 = 2-level sandcastle pulse |
| DELOF | delay of leading edge of clamping pulse switched off | 0 = delay |
|  |  | 1 = no delay |
| BREN | buffer register enable | 0 = new data are executed just after reception |
|  |  | 1 = data is held in a latch (buffer register) and will be transferred to their destination register within the next vertical blanking interval; the device does not acknowledge any new data transfer until the internal transfer to the destination register has been completed |
| NMEN | NTSC matrix enable; note 1 | 0 = PAL matrix |
|  |  | 1 = NTSC matrix; hue position set on -2 degrees |
| Control register 2 |  |  |
| HDTV | HDTV / progressive scan for ADBL line counter | 0 = 272 (PAL), 224 (NTSC) lines |
|  |  | 1 = 544 (PAL), 448 (NTSC) lines |
| FSBL | full screen black level, e.g. for optical measurement | 0 = normal mode |
|  |  | 1 = cut-off measurement level during full field, brightness inactive |
| BCOF | internal black level control off | 0 = automatic cut-off control active |
|  |  | 1 = RGB outputs clamped to fixed DC levels |
| FSON2 | fast switch 2 on | see Table 4 |
| FSDIS1 | fast switch 1 disable |  |
| FSDIS2 | fast switch 2 disable |  |
| FSON1 | fast switch 1 on |  |
| Control register 3 |  |  |
| ADBL | adaptive black | 0 = off |
|  |  | 1 = on |
| YHI | Y high level | $0=$ input $=0.315 \mathrm{~V}$ (p-p) (black-white) |
|  |  | 1 = input $=1.0 \mathrm{~V}$ (p-p) (black-white) |
| MOD2 | modus 2 | 0 = inactive; <br> (BCOF $=0$ ) AND $($ MOD2 $=1)$ is senseless, no output stabilization |
|  |  | 1 = output clamp without brightness adjust, brightness remains active e.g. for blue stretch |
| BLST | blue stretch | 0 = off |
|  |  | 1 = on |
| YEXH | Y exclusive hue | $0=$ pin 26 is switched to hue adjust output |
|  |  | $1=$ pin 26 is switched to Y output |
| RELC | relative to cut-off | 0 = peak drive limit to absolute output |
|  |  | 1 = peak drive limit relative to cut-off |
| TCPL | time constant peak drive limiter | $0=2 \mathrm{f}_{\mathrm{H}}$ |
|  |  | $1=1 \mathrm{f}_{\mathrm{H}}$ |

## RGB video processor with automatic cut-off control and gamma adjust

## Note

1. Matrix coefficients should be tested by comparing RGB output signals with a reference RGB colour bar, which is fed in at $(R G B)_{1}$ or $(R G B)_{2}$ inputs. In the event of NMEN $=1$ (NTSC) at minimum saturation the $Y$ output and RGB output signals are not identical to the $Y$ input signal. PAL/SECAM signals are matrixed by the equation:
$V_{G-Y}=-0.51 V_{R-Y}-0.19 V_{B-Y}$
NTSC signals are matrixed by the equations (hue phase shift of -2 degrees):
$V_{R-Y^{*}}=1.39 V_{R-Y}-0.07 V_{B-Y} ; V_{G-Y^{*}}=-0.46 V_{R-Y}-0.15 V_{B-Y} ; V_{B-Y^{*}}=V_{B-Y}$
For demodulation axis see Fig.11.
In the matrix equations: $\mathrm{V}_{\mathrm{R}-\mathrm{Y}}$ and $\mathrm{V}_{\mathrm{B}-\mathrm{Y}}$ are conventional PAL demodulation axes and amplitudes at the output of the demodulator. $\mathrm{V}_{\mathrm{R}-\mathrm{Y}^{*}}, \mathrm{~V}_{\mathrm{G}-\mathrm{Y}^{*}}$ and $\mathrm{V}_{\mathrm{B}-\mathrm{Y}^{*}}$ are the NTSC-modified colour-difference signals.



Fig. 8 Principle of adaptive black control.


Fig. 9 Principle of blue stretch.

RGB video processor with automatic cut-off control and gamma adjust



RGB video processor with automatic cut-off control and gamma adjust

## LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

| SYMBOL | PARAMETER | CONDITIONS | MIN. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{P}}$ | supply voltage |  | -0.1 | +9.0 | V |
| $\mathrm{~V}_{10,11,12}$ | $(\text { RGB })_{1}$ inputs | with respect to GND | -0.1 | $\mathrm{~V}_{\mathrm{P}}$ | V |
| $\mathrm{V}_{2,3,4}$ | $(R G B)_{2}$ inputs | with respect to GND | -0.1 | $\mathrm{~V}_{\mathrm{P}}$ | V |
| $\mathrm{V}_{8,7,6}$ | $\mathrm{Y}, \mathrm{CD}$-inputs | with respect to GND | -0.1 | $\mathrm{~V}_{\mathrm{P}}$ | V |
| $\mathrm{V}_{13,1}$ | switch 1 and switch 2 input voltage | with respect to GND | -0.1 | $\mathrm{~V}_{\mathrm{P}}$ | V |
| $\mathrm{V}_{25,23,21,17}$ | black level, leakage storage | with respect to GND | -0.1 | $\mathrm{~V}_{\mathrm{P}}$ | V |
| $\mathrm{V}_{14}$ | sandcastle | with respect to GND | -0.7 | $\mathrm{~V}_{\mathrm{P}}+5.8$ | V |
| $\mathrm{~V}_{15}$ | average current information | with respect to GND | -0.7 | $\mathrm{~V}_{\mathrm{P}}+0.7$ | V |
| $\mathrm{~V}_{16}$ | peak drive storage | with respect to GND | -0.1 | $\mathrm{~V}_{\mathrm{P}}$ | V |
| $\mathrm{V}_{18}$ | peak dark storage | with respect to GND | -0.1 | $\mathrm{~V}_{\mathrm{P}}$ | V |
| $\mathrm{V}_{19}$ | cut-off control input voltage | with respect to GND | -0.7 | $\mathrm{~V}_{\mathrm{P}}+0.7$ | V |
| $\mathrm{~V}_{27,28}$ | $\mathrm{I}^{2} \mathrm{C}$-bus: SDA and SCL voltage | with respect to GND | -0.1 | $\mathrm{~V}_{\mathrm{P}}$ | V |
| $\mathrm{I}_{24,22,20}$ | output peak current |  | -20 | - | mA |
| $\mathrm{I}_{24,22,20}$ | output average current |  | -10 | - | mA |
| $\mathrm{I}_{26}$ | Y output/hue adjust current |  | -8 | - | mA |
| $\mathrm{P}_{\text {tot }}$ | total power dissipation |  | - | 1200 | mW |
| $\mathrm{~T}_{\text {amb }}$ | operating ambient temperature |  | -20 | +70 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }}$ | storage temperature |  | -20 | +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\text {es }}$ | electrostatic handling; note 1 |  | -500 | +500 | V |

## Note

1. Charge device model class A: discharging a 200 pF capacitor through a $0 \Omega$ series resistor.

## THERMAL CHARACTERISTICS

| SYMBOL | PARAMETER | VALUE | UNIT |
| :--- | :--- | :---: | :---: |
| $\mathrm{R}_{\text {th } j \text { ja }}$ | thermal resistance from junction to ambient in free air | 47 | K/W |

## QUALITY SPECIFICATION

In accordance with URV-4-2-59/601. The number of the quality specification can be found in the "Quality Reference Handbook". The handbook can be ordered using the code 939775000192.

## RGB video processor with automatic cut-off control and gamma adjust

## CHARACTERISTICS

$\mathrm{V}_{\mathrm{P}}=8 \mathrm{~V} ; \mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{nom}}$ : nominal signal amplitude (black-white) 2000 mV (peak-to-peak value) at output pins; gamma $=1$; adaptive black inactive; brightness, contrast, saturation and white balance at nominal settings; no beam current or peak drive limiting; all voltages are related to ground (pin 9) and measured in Figs 1 and 2; unless otherwise specified.

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{P}}$ | supply voltage (pin 5) |  | 7.2 | 8 | 8.8 | V |
| $\mathrm{I}_{\mathrm{P}}$ | supply current (pin 5) |  | - | 100 | 120 | mA |

Colour-difference inputs $(-(B-Y)$ : pin $6,-(R-Y)$ : pin 7; capacitively coupled to a low-ohmic source; recommendation: maximum $600 \Omega$ )

| $\mathrm{V}_{6(p-p)}$ | $-(\mathrm{B}-\mathrm{Y})$ signal (peak-to-peak value) | $75 \%$ colour bar signal | - | 1.33 | - | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{6,7}$ | internal bias during clamping |  | - | 4.0 | - | V |
| $\mathrm{I}_{6,7}$ | DC input current between clamping <br> pulses |  | - | - | 0.1 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{6,7}$ | maximum input current during clamping |  | 100 | 180 | 260 | $\mu \mathrm{~A}$ |
| $\mathrm{~V}_{7(p-p)}$ | $-(\mathrm{R}-\mathrm{Y})$ signal (peak-to-peak value) | $75 \%$ colour bar signal | - | 1.05 | - | V |
| $\mathrm{R}_{6,7}$ | AC input resistance |  | 10.0 | - | - | $\mathrm{M} \Omega$ |

Y input (pin 8; capacitively coupled to a low-ohmic source; recommendation: maximum $600 \Omega$ )

| $\mathrm{V}_{8(p-p)}$ | input signal (composite signal; VBS; peak-to-peak value) | adaption to two different signal levels via control bit YHI $\begin{aligned} & \mathrm{YHI}=0 \\ & \mathrm{YHI}=1 \end{aligned}$ | - | $\begin{aligned} & 0.45 \\ & 1.43 \end{aligned}$ |  | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{R}_{8}$ | AC input resistance |  | 10.0 | - | - | $\mathrm{M} \Omega$ |
| $\mathrm{V}_{8}$ | internal bias during clamping | $\mathrm{YHI}=0$ | - | 3.7 | - | V |
|  |  | $\mathrm{YHI}=1$ | - | 4.6 | - | V |
| $\mathrm{I}_{8}$ | DC input current between clamping pulses |  | - | - | 0.1 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{8(\text { max }) \text { (clamp) }}$ | maximum input current during clamping |  | 100 | 180 | 260 | $\mu \mathrm{A}$ |

RGB input 1 ( $R_{1}$ : pin 10, $G_{1}$ : pin 11, $B_{1}$ : pin 12; capacitively coupled to a low-ohmic source; recommendation: maximum $600 \Omega$ ); note 1

| $\mathrm{V}_{10,11,12(p-p)}$ | input signal (peak-to-peak value) |  | - | 0.7 | - | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{R}_{10,11,12}$ | AC input resistance |  | 10.0 | - | - | $\mathrm{M} \Omega$ |
| $\mathrm{V}_{10,11,12}$ | internal bias during clamping |  | - | 5.1 | - | V |
| $\mathrm{I}_{10,11,12}$ | DC input current between clamping <br> pulses |  | - | - | 0.1 | $\mu \mathrm{~A}$ |
| $\mathrm{I}_{10,11,12 \text { (clamp) }}$ | maximum input current during clamping |  | 100 | 180 | 260 | $\mu \mathrm{~A}$ |

RGB video processor with automatic cut-off control and gamma adjust

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RGB input 2 ( $R_{2}$ : pin $2, G_{2}$ : pin 3, $B_{2}$ : pin 4; capacitively coupled to a low-ohmic source; recommendation: maximum $600 \Omega$ ); note 1 |  |  |  |  |  |  |
| $\mathrm{V}_{2,3,4(\mathrm{p}-\mathrm{p})}$ | input signal (peak-to-peak value) |  | - | 0.7 | - | V |
| $\mathrm{R}_{2,3,4}$ | AC input resistance |  | 10.0 | - | - | $\mathrm{M} \Omega$ |
| $\mathrm{V}_{2,3,4}$ | internal bias during clamping |  | - | 5.1 | - | V |
| $\mathrm{I}_{2,3,4}$ | DC input current between clamping pulses |  | - | - | 0.1 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{2,3,4(\text { max ) (clamp) }}$ | maximum input current during clamping |  | 100 | 180 | 260 | $\mu \mathrm{A}$ |

Fast signal switches and blanking (fast signal switch 1 (pin 13); $Y, C D / R_{1}, G_{1}, B_{1}$; control bits FSDIS1, FSON1)

| $\mathrm{V}_{13}$ | voltage to select Y and CD |  | - | 0 | 0.4 | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{13}$ | voltage range to select $\mathrm{R}_{1}, \mathrm{G}_{1}$ and $\mathrm{B}_{1}$ |  | 0.9 | 1.0 | 5.5 | V |
| $\mathrm{R}_{13}$ | internal resistor to ground |  | 3.3 | 3.8 | 4.8 | $\mathrm{k} \Omega$ |
| CROSSTALK (SEE TABLE 5) |  | - | - | 10 | ns |  |
| $\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{i}}$ | difference between transit times for <br> signal switching and signal insertion |  |  |  |  |  |

Fast signal switch 2 (pin 1; $Y, C D$ or $R_{1}, G_{1}, B_{1} / R_{2}, G_{2}, B_{2}$; control bits FSDIS2, FSON2)

| $\mathrm{V}_{1}$ | voltage to select Y and $\mathrm{CD} / \mathrm{R}_{1}, \mathrm{G}_{1}$ and <br> $\mathrm{B}_{1}$ |  | - | 0 | 0.4 | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{1}$ | voltage range to select $\mathrm{R}_{2}, \mathrm{G}_{2}$ and $\mathrm{B}_{2}$ |  | 0.9 | 1.0 | 5.5 | V |
| $\mathrm{~V}_{1}$ | required minimal voltage to switch off the <br> ADBL measurement |  | - | 0.87 | 1.0 | V |
| $\mathrm{R}_{1}$ | internal resistor to ground | $\mathrm{R}_{1}>\mathrm{R}_{13}$ | 2.8 | 4.2 | 6.0 | $\mathrm{k} \Omega$ |
| CROSSTALK (SEE TABLE 5) |  | - | - | 10 | ns |  |
| $\mathrm{t}_{\mathrm{s}}-\mathrm{t}_{\mathrm{i}}$ | difference between transit times for <br> signal switching and signal insertion |  |  |  |  |  |

Adjust stages (adaptive black, gamma, contrast, saturation, brightness and white point adjust, blue stretch)

| AdAPTIVE BLACK (DETECTORS InACTIVE STATUS DUE TO ACTION OF FAST SWITCH 2 (PIN 1); see Table 4, Fig. 9 and note 2) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{I}_{18 \text { (dch) }}$ | discharge current of peak dark storage capacitor | outside active measurement window | -1.0 | 0.0 | +1.0 | $\mu \mathrm{A}$ |
|  |  | inside active measurement window | 1.5 | 2.5 | 3.5 | $\mu \mathrm{A}$ |
| $\mathrm{I}_{18 \text { (ch) }}$ | charge current of peak dark storage capacitor |  | -360 | -300 | -250 | $\mu \mathrm{A}$ |
| $\mathrm{d}_{\mathrm{b}(\text { max })}$ | maximum level shift: $\Delta$ black level in percent of nominal signal amplitude |  | 10 | 13 | 16 | \% |
| $\mathrm{d}_{\mathrm{b} \text { (nom) }}$ | difference between nominal black and adaptive black in percent of nominal signal amplitude |  | -3 | 0 | +3 | \% |
| $\mathrm{t}_{\text {dibb }}$ | detectors inactive time before blanking |  | 2.3 | 3.1 | 4.0 | $\mu \mathrm{s}$ |
| $\mathrm{t}_{\text {diab }}$ | detectors inactive time after blanking |  | 2.3 | 2.5 | 3.4 | $\mu \mathrm{s}$ |

## RGB video processor with automatic cut-off control and gamma adjust

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Gamma adjust (acts on internal Y signal; Y matrix see Y output; ${ }^{2}$ h-bus controlled potentiometer (SUBADDRESS OBH); RESOLUTION 6 BIT; note 3) |  |  |  |  |  |  |
| $\mathrm{d}_{\mathrm{g}}$ | range of gamma minimum (3FH) maximum ( 00 H ) |  | - | $\begin{array}{\|l} 0.7 \\ 1.0 \end{array}$ |  |  |
| $\mathrm{G}_{\text {max }}$ | maximum gain at minimum gamma | near nominal black | 5 | 6 | 7 | dB |
| Saturation adjust (acts on RGB signals; Y matrix see Y output; ${ }^{2} \mathrm{C}$-bus controlled potentiometers (SUBADDRESS 01H); RESOLUTION $1.5 \%$ OF MAXIMUM SATURATION) |  |  |  |  |  |  |
| $\mathrm{d}_{\text {(max) }}$ | maximum saturation | ${ }^{1} 2 \mathrm{C}$-bus data 3FH; measured at 100 kHz ; relative to nominal saturation; note 4 | 4.7 | 5.2 | 5.8 | dB |
| $\mathrm{d}_{\text {( } \text { min) }}$ | minimum saturation | ${ }^{2}$ ²-bus data 00 H ; measured at 100 kHz ; relative to typical value of maximum saturation | - | - | -50 | dB |
| CONTRAST ADJUST (ACTS ON RGB SIGNALS; I²C-BUS CONTROLLED POTENTIOMETERS (SUBADDRESS 02H); RESOLUTION $1.5 \%$ OF MAXIMUM CONTRAST) |  |  |  |  |  |  |
| $\mathrm{d}_{\text {( } \text { max })}$ | maximum contrast | ${ }^{2} \mathrm{C}$-bus data 3FH; limiters inactive; relative to nominal contrast; note 5 | - | 4.5 | 5.5 | dB |
| $\mathrm{d}_{\mathrm{C}(\text { min })}$ | minimum contrast | ${ }^{12} \mathrm{C}$-bus data 00 H ; relative to maximum contrast | -28 | -22 | -16 | dB |

BRIGHTNESS ADJUST (ACTS ON RGB SIGNALS; ${ }^{2}$ ²-BUS CONTROLLED POTENTIOMETERS (SUBADDRESS OOH); RESOLUTION $1.5 \%$ OF RANGE; $\Delta$ BLACK LEVEL IN PERCENT OF NOMINAL SIGNAL AMPLITUDE REFERRED TO CUT-OFF MEASURING LEVEL)

| $\mathrm{d}_{\text {br }}(\mathrm{max})$ | maximum brightness: $\Delta$ black level | $\mathrm{I}^{2} \mathrm{C}$-bus data 3FH | 23 | 30 | 37 | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{d}_{\text {br(nom) }}$ | nominal brightness: $\Delta$ black level | $\mathrm{I}^{2} \mathrm{C}$-bus data 29 H | -7 | 0 | +7 | \% |
| $\mathrm{d}_{\mathrm{br}(\text { min })}$ | minimum brightness: $\Delta$ black level | $\mathrm{I}^{2} \mathrm{C}$-bus data 00 H | -58 | -50 | -42 | \% |
| $\mathrm{d}_{\text {br(max }}$ | maximum brightness: $\Delta$ black level | ${ }^{1}$ ² C-bus data 3FH; control bits $\mathrm{BCOF}=1$ and MOD2 $=0$ | 23 | 30 | 37 | \% |
| $\mathrm{d}_{\text {br(min) }}$ | minimum brightness: $\Delta$ black level | ${ }^{1}{ }^{2} \mathrm{C}$-bus data 00 H ; control bits $\mathrm{BCOF}=1$ and MOD2 $=0$ | -58 | -50 | -42 | \% |
| Blue stretch (blue stretch is activated by ${ }^{2} \mathrm{C}$-bus Control bit BLST $=1$; see Fig.9) |  |  |  |  |  |  |
| $\mathrm{G}_{\mathrm{bs}}$ | increase of small signal gain | $100 \%$ of nominal signal amplitude and at 1 MHz | 15 | 20 | 25 | \% |

RGB video processor with automatic cut-off control and gamma adjust

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIfFERENCES OF bLACK LEVEL STEPS (DIFFERENCES FROM CHANNEL TO CHANNEL OF THE RATIO OF THE DIFFERENCE (BLACK LEVEL CUT-OFF MEASUREMENT LEVEL) TO ACTUAL NOMINAL SIGNAL AMPLITUDE ( $\mathrm{V}_{\text {Nом24 }}, \mathrm{V}_{\text {Nом22 }}, \mathrm{V}_{\text {Noм20 }}$ ) OVER the WHOLE CONTRAST, BRIGHTNESS AND SATURATION RANGE, SWITCHING MATRIX OR SWITCHING FAST SWITCHES, GAMMA $=1$, BLST $=0, \mathrm{ADBL}=0$ ) |  |  |  |  |  |  |
| $\Delta \mathrm{V} / \mathrm{V}_{\text {nom }}$ | static deviation | note 6; ripple on pin 5 during clamping $\leq 1 \mathrm{mV}$; note 7 | -1.0 | - | +1.0 | \% |
|  |  | at nominal saturation | -0.5 | - | +0.5 | \% |
| RGB outputs (output for positive RGB signals (R: pin 24, G: pin 2, B: pin 20); following data without external load) |  |  |  |  |  |  |
| $\mathrm{R}_{24,22,20}$ | differential output resistance |  | - | 25 | 30 | $\Omega$ |
| $\mathrm{l}_{24,22,20 \text { (max) }}$ | maximum output current |  | 4.0 | 5.0 | - | mA |
| $\mathrm{V}_{24,22,20(\mathrm{~min})}$ | minimum output voltage | note 8 | - | - | 0.8 | V |
| $\mathrm{V}_{24,22,20 \text { (max) }}$ | maximum output voltage | $\mathrm{R}_{\mathrm{L}} \geq 2 \mathrm{k} \Omega$ | 6.3 | 7.0 | - | V |
| $\mathrm{V}_{24,22,20(m a x)(p-p)}$ | maximum signal amplitude (black-white) due to internal limits (peak-to-peak value) |  | 3.3 | - | - | V |
| $\mathrm{V}_{24,22,20(m a x)(\text { p-p })}$ | nominal signal amplitude (black-white; peak-to-peak value) | at nominal white adjust, contrast and saturation setting; gamma = 1; nominal input signals | 1.7 | 2.0 | 2.3 | V |
| $\mathrm{V}_{24,22,20}$ | cut-off measurement level | note 8 | 1.0 | - | 5.0 | V |
| $\mathrm{V}_{24,22,20}$ | recommended cut-off measurement level |  | - | 3.0 | - | V |
| OUtPut Clamping (RGB) |  |  |  |  |  |  |
| $\mathrm{V}_{20,22,24}$ | clamp voltage black level | control bit BCOF = 1 | 2.3 | 2.5 | 2.7 | V |
| White Potentiometers |  |  |  |  |  |  |
| $\Delta \mathrm{G}_{\mathrm{v} \text { (inc)(max) }}$ | maximum increase of AC gain | ${ }^{1}$ ² C-bus data 3FH; relative to nominal setting; note 9 | 40 | 50 | 60 | \% |
| $\Delta \mathrm{G}_{\mathrm{v} \text { (dec)(max) }}$ | maximum decrease of AC gain | $\mathrm{I}^{2} \mathrm{C}$-bus data 00 H ; relative to nominal setting; note 9 | 40 | 50 | 60 | \% |

RGB video processor with automatic cut-off control and gamma adjust

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OVERALL WHITE POINT DEVIATION |  |  |  |  |  |  |
| $\Delta \mathrm{V} / \mathrm{V}_{\text {nom }}$ | note 10 | input: (RGB) ${ }_{1,2}$; differences from channel to channel of the ratio of the difference (signal white level cut-off measurement level) to actual nominal signal amplitude ( $\mathrm{V}_{\text {nom24 }}$, $\mathrm{V}_{\text {nom22 }}, \mathrm{V}_{\text {nom20 }}$ ) over the whole saturation range at nominal contrast, brightness and nominal input signals; ripple on pin 5 during clamping $\leq 1 \mathrm{mV}$; note 7 | -2.0 | - | +2.0 | \% |
| Frequency behaviour |  |  |  |  |  |  |
| Between the Y input (Pin 8) and the RGB outputs (Pins 24, 22 and 20) |  |  |  |  |  |  |
| $\Delta \mathrm{G}$ | decrease in gain | $1 \mathrm{M} \Omega$ and 20 pF load at 13 MHz | - | - | 3 | dB |

BETWEEN THE COLOUR-DIFFERENCE INPUTS (PINS 7 AND 6) AND THE CORRESPONDING R AND B OUTPUTS (PINS 24 AND 20)

| $\Delta \mathrm{G}$ | decrease in gain | at 13 MHz | - | - | 3 | dB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| $\Delta \mathrm{G}$ | decrease in gain | at 22 MHz | - | - | 3 | dB |
| Sandcastle input (pin 14; control bit SC5); note 11 |  |  |  |  |  |  |
| $\mathrm{l}_{14}$ | input current | $\mathrm{V}_{14}<0.5 \mathrm{~V}$ | -100 | - | - | $\mu \mathrm{A}$ |
| $\mathrm{C}_{14-9}$ | input capacitance |  | - | - | 10 | pF |
| $\mathrm{V}_{14}$ | required voltage range for horizontal and vertical blanking pulses <br> for horizontal pulses (line count) for burst key pulses <br> for burst key pulses and line count | $\text { SC5 }=0 \text { or SC5 = } 1$ $\begin{aligned} & S C 5=0 \\ & S C 5=0 \end{aligned}$ $\text { SC5 }=1$ | $\begin{aligned} & 2.0 \\ & 4.0 \\ & 6.1 \\ & 4.0 \end{aligned}$ | $\begin{array}{\|l} 2.5 \\ 4.5 \\ - \end{array}$ | $\begin{aligned} & 3.0 \\ & \\ & 4.9 \\ & \mathrm{~V}_{\mathrm{P}}+ \\ & 5.8 \\ & \mathrm{~V}_{\mathrm{P}}+ \\ & 5.8 \end{aligned}$ | $\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$ |

RGB video processor with automatic cut-off control and gamma adjust

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CLAMP PULSE DELAY |  |  |  |  |  |  |
| $\mathrm{T}_{\mathrm{d} \text { (clamp) }}$ | delay of leading edge of clamping pulse | nominal sandcastle pulse $\begin{aligned} & \text { DELOF }=0 \\ & \text { DELOF }=1 \end{aligned}$ | $\begin{aligned} & 1.2 \\ & - \end{aligned}$ | $\begin{aligned} & 1.5 \\ & 0 \end{aligned}$ | $1.8$ | $\begin{aligned} & \mu \mathrm{s} \\ & \mu \mathrm{~s} \end{aligned}$ |
| REQUIRED MINIMAL BURST GATE PULSE WIDTH |  |  |  |  |  |  |
| $\mathrm{t}_{\mathrm{w}}$ | DELOF = 0 | line frequency: 16 kHz | 3 | - | - | $\mu \mathrm{s}$ |
|  | DELOF = 1 | line frequency: 32 kHz | 1.5 | - | - | $\mu \mathrm{s}$ |
| Generation of measurement lines and blanking; note 12 |  |  |  |  |  |  |
| $\Delta \mathrm{V} / \mathrm{V}_{\text {nom }}$ | $\Delta \mathrm{V}=\mathrm{VCL}-\mathrm{VUB}$ <br> difference between ultra black level (VUB) and measurement level (VCL) in percent of nominal signal amplitude | no clipping; independent of white point adjust | 25 | 35 | 45 | \% |
| WARM UP TEST PULSE dURING MT (see pulse diagram Fig.10) |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{WU}}$ | warm up level | $\mathrm{V}_{\mathrm{WU}}=\mathrm{V}_{\mathrm{PL}}-1 \mathrm{~V}$; <br> $\mathrm{V}_{\mathrm{PL}}=$ peak drive level (see also signal limiting); given by $\mathrm{I}^{2} \mathrm{C}$-bus; subaddress OAH; no warm up test pulse in the event of output clamping $(\mathrm{BCOF}=1)$ | - | - | - | - |
| $\mathrm{V}_{\mathrm{WU} \text { (max) }}$ | maximum warm up level | ${ }^{1}{ }^{2} \mathrm{C}$-bus data 3FH; RELC $=0$ | 6.3 | 6.6 | 6.9 | V |
| $\mathrm{V}_{\text {WU(fixed) }}$ | fixed warm up level | RELC = 1 | 5.0 | 5.2 | 5.4 | V |
| Threshold for Power On Reset (POR) during time DG (see pulse diagram Fig.10) |  |  |  |  |  |  |
| $\mathrm{V}_{20,22,24(\mathrm{POR})}$ | output voltage to cause POR | RELC = 0 | - | $\mathrm{V}_{\mathrm{PL}}$ | - | V |
|  |  | RELC $=1$ | - | 5.7 | - | V |
| Y output (pin 26; note 13) |  |  |  |  |  |  |
| $\mathrm{V}_{\text {26(nom)(p-p) }}$ | nominal signal amplitude (black-white; independent of gamma, adaptive black, saturation, contrast and brightness; peak-to-peak value) | control bit YEXH = 1; hue DAC (subaddress 03 H ) set to $>28 \mathrm{H}$ | 0.85 | 1.0 | 1.15 | V |
| $\mathrm{V}_{26}$ | black level | $\text { YEXH = 1; } \mathrm{I}^{2} \mathrm{C} \text {-bus }$ data 3FH | - | 4.0 | - | V |
|  |  | $\begin{aligned} & \text { YEXH = } 1 ; \mathrm{I}^{2} \mathrm{C} \text {-bus } \\ & \text { data } 20 \mathrm{H} \end{aligned}$ | - | 2.0 | - | V |
| $\mathrm{a}_{\mathrm{r}}$ | Y matrix coefficients | $Y=a_{r} R+a_{g} G+a_{b} B$ | 0.27 | 0.30 | 0.33 |  |
| $\mathrm{ag}_{\mathrm{g}}$ | Y matrix coefficients | $Y=a_{r} R+a_{g} G+a_{b} B$ | 0.53 | 0.59 | 0.65 |  |
| $\mathrm{a}_{\mathrm{b}}$ | Y matrix coefficients | $Y=a_{r} R+a_{g} G+a_{b} B$ | 0.10 | 0.11 | 0.12 |  |

## RGB video processor with automatic cut-off control and gamma adjust

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{R}_{26}$ | differential output resistance |  | - | 190 | 230 | $\Omega$ |
| $\Delta \tau_{26}$ | group delay time | between RGB outputs <br> and Y output | 20 | 25 | 30 | ns |
| $\mathrm{f}_{\mathrm{g}}$ | 3 dB bandwidth |  | 11 | 15 | - | MHz |

Automatic cut-off control (pin 19; measurement periods see beam info on pin 19)

| $\mathrm{V}_{19}$ | permissible voltage (also during scanning period) |  | - | - | $\begin{aligned} & \hline V_{P}- \\ & 1.4 \end{aligned}$ | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {REFO }}$ | internally controlled voltage on pin 19 | during leakage measurement time LM | 2.4 | 2.7 | 3.0 | V |
| $\mathrm{I}_{019(\text { max })}$ | maximum output current |  | -350 | - | -250 | $\mu \mathrm{A}$ |
| $\mathrm{l}_{119(\text { max })}$ | maximum input current |  | 250 | - | 350 | $\mu \mathrm{A}$ |
| $\mathrm{R}_{19}$ | input resistance for measurement input |  | 1 | - | - | $\mathrm{M} \Omega$ |
| $\mathrm{I}_{19}$ | additional input current | only during warm up | - | 0.5 | - | mA |
| $\mathrm{V}_{19}$ | threshold of warm up detector (active in line MG) |  | 4.3 | 4.5 | 4.7 | V |
| $\mathrm{V}_{\text {MEAS }}$ | difference between input voltage for cut-off and $\mathrm{V}_{\text {REF0 }}$; adjustable via ${ }^{2} \mathrm{C}$-bus (subaddress for reference: R: 07 H , G: 08 H and $\mathrm{B}: 09 \mathrm{H}$ ) |  | - | - | - | - |
|  | maximum $\mathrm{V}_{\text {MEAS }}$ | $\mathrm{I}^{2} \mathrm{C}$-bus data 3FH | 1.45 | 1.6 | 1.75 | V |
|  | nominal $\mathrm{V}_{\text {MEAS }}$ | $\mathrm{I}^{2} \mathrm{C}$-bus data 20 H | 0.9 | 1.0 | 1.1 | V |
|  | minimum $\mathrm{V}_{\text {MEAS }}$ | $\mathrm{I}^{2} \mathrm{C}$-bus data 00 H | 0.4 | 0.45 | 0.5 | V |

Storage of cut-off control voltage / output clamping voltage (pins 25, 23 and 21)

| $\mathrm{I}_{25,23,21}$ | input currents of storage inputs outside <br> of the measurement time |  | - | - | 0.1 | $\mu \mathrm{~A}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\left\|\mathrm{I}_{25,23,21 \text { (max) }}\right\|$ | maximum charge / discharge current <br> during measurement time |  | 0.2 | 0.3 | 0.4 | mA |
| $\mathrm{G}_{\text {stg }}$ | gain from storage pins 25,23 and 21 to <br> outputs |  | - | 1.7 | - | - |

Storage of leakage information (pin 17)

| $\mathrm{I}_{17}$ | maximum charge / discharge current at <br> time LM | discharge current | peak limiting during time <br> MK active | - | 400 | - |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{17}$ | leakage current | outside time LM | - | - | 0.1 | $\mu \mathrm{AA}$ |
| $\mathrm{I}_{17}$ | voltage to reset IC to switch on <br> conditions | $\mathrm{V}_{17}$ is below | 2.3 | 2.5 | 3.0 | V |
| $\mathrm{~V}_{17}$ |  |  |  |  |  |  |

RGB video processor with automatic cut-off control and gamma adjust

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Signal limiting (the limitation acts on contrast and at low contrast on brightness) |  |  |  |  |  |  |
| Average beam current limiting (PIN 15) |  |  |  |  |  |  |
| $\mathrm{V}_{15}$ | start of contrast reduction |  | - | 4 | - | V |
| $\Delta \mathrm{V}_{15}$ | input range for full contrast reduction |  | - | -2 | - | V |
| $\mathrm{V}_{15}$ | start of brightness reduction |  | - | 2.5 | - | V |
| $\Delta \mathrm{V}_{15}$ | input range for full brightness reduction |  | - | -1.6 | - | V |
| $\mathrm{l}_{15}$ | input current |  | - | - | -0.5 | $\mu \mathrm{A}$ |


| $\mathrm{V}_{24,22,20(\text { max })}$ | maximum limiting level | extrapolated from 2FH | 6.8 | - | 7.2 | V |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{24,22,20(\text { min }}$ | minimum limiting level | $\mathrm{I}^{2} \mathrm{C}$-bus data 00 H | - | 2.3 | 3 | V |
| $\mathrm{l}_{16 \text { (max) }}$ | maximum discharge current at peak drive | RELC = 0 | 4 | - | 6 | mA |

Peak signal limiting (pin 16; control bit RELC = 1; limiting level ( $\mathrm{V}_{\text {LiL }}$ ) adjustable by ${ }^{2}$ ²-bus (Subaddress 0AH))

| $V_{\text {LiL }}$ |  | equal gain in white point <br> adjust; signal only in <br> one output channel; <br> peak drive limiting <br> starts, if the maximum <br> of the RGB signals <br> after white point <br> adjustment exceeds a <br> threshold |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  | I2C-bus data 3FH | 3.2 | 3.5 | 4.0 | $V$ |
|  | maximum limiting level | I2C-bus data 00 H | 1.2 | 1.5 | 1.8 | V |


| $\mathrm{I}_{16 \text { (tot)(dch) }}$ | total discharge current | $\mathrm{I}_{16}=\mathrm{I}_{16(1)}+\mathrm{I}_{16(2)}+\mathrm{I}_{16(3)}$ | - | - | - | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Threshold 1 (TH1) |  |  |  |  |  |  |
| $\mathrm{l}_{16(1)\left(\text { max ( }{ }^{\text {dch }} \text { ) }\right.}$ | maximum discharge current | TH1 = MX + $\mathrm{V}_{\text {LiL }} ; 1$ line delayed and low-pass filtered | 4.5 | 6 | 7.5 | mA |
| S | steepness |  | - | 15 | - | mA/V |

Low-pass filter, control bit TCPL

| $\mathrm{t}_{\text {DPDL }}$ | time constant low-pass filter | $\mathrm{TCPL}=1\left(\right.$ at $\left.1 \mathrm{f}_{\mathrm{H}}\right) ;$ <br> $\mathrm{RELC}=1$ | 0.9 | 1.2 | 1.5 | $\mu \mathrm{~s}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{t}_{\mathrm{DPDL}}$ | time constant low-pass filter | $\mathrm{TCPL}=0\left(\right.$ at $\left.2 \mathrm{f}_{\mathrm{H}}\right) ;$ <br> $\mathrm{RELC}=1$ | 0.4 | 0.6 | 0.8 | $\mu \mathrm{~s}$ |
| Threshold 2 (TH2) | maximum discharge current | $\mathrm{TH} 2=\mathrm{MX}+\mathrm{V}_{\mathrm{LiL}} \times 1.10 ;$ <br> 1 line delayed | 4.5 | 6 | 7.5 | mA |
| $\mathrm{I}_{16(2)(\text { max })(\text { dch })}$ | steepness |  | - | 15 | - | $\mathrm{mA} / \mathrm{V}$ |
| S |  |  |  |  |  |  |

RGB video processor with automatic cut-off control and gamma adjust

| SYMBOL | PARAMETER | CONDITIONS | MIN. | TYP. | MAX. | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Threshold 3 (TH3) |  |  |  |  |  |  |
| $\mathrm{l}_{16(3)(\mathrm{max})(\text { dch }}$ | maximum discharge current | $\mathrm{TH} 3=\mathrm{MX}+\mathrm{V}_{\mathrm{LiL}} ;$ undelayed | 0.45 | 0.6 | 0.75 | mA |
| S | steepness |  | - | 1.5 | - | mA/V |
| Charge current |  |  |  |  |  |  |
| $\mathrm{I}_{16}$ | charge current |  | -2 | -1 | -0.5 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{16}$ | start of contrast reduction |  | - | 4 | - | V |
| $\Delta \mathrm{V}_{16}$ | input range for full contrast reduction |  | - | -2 | - | V |
| $\mathrm{V}_{16}$ | start of brightness reduction |  | - | 2.5 | - | V |
| $\Delta \mathrm{V}_{16}$ | input range for full brightness reduction |  | - | -1.6 | - | V |
| $\mathrm{V}_{16 \text { (max) }}$ | maximum voltage by internal limitation |  | 4.5 | - | - | V |
| Hue adjust output (pin 26); note 14 |  |  |  |  |  |  |
| $\mathrm{V}_{\text {o26(min) }}$ | minimum output voltage | $\text { YEXH = 0; } \mathrm{I}^{2} \mathrm{C} \text {-bus }$ $\text { data } 00 \mathrm{H}$ | 0.5 | - | 1.0 | V |
| $\mathrm{V}_{\text {o26(nom) }}$ | nominal output voltage | YEXH = 0; ${ }^{2}$ ²-bus data 20H | 3.0 | 3.2 | 3.4 | V |
| $\mathrm{V}_{\text {o26(max) }}$ | maximum output voltage | YEXH = 0; $I^{2} \mathrm{C}$-bus data 3FH | 4.8 | - | 5.6 | V |
| $\mathrm{I}_{26}$ | current of internal emitter follower |  | 500 | 700 | - | $\mu \mathrm{A}$ |

## $\mathrm{I}^{2} \mathrm{C}$-bus inputs

| $\mathrm{f}_{28}$ | clock frequency range | 0 | - | 100 | kHz |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{t}_{\text {SU; }}$ DAT |  |  |  |  |  |

Input levels (pins 27 and 28)

| $\mathrm{V}_{\mathrm{IL}}$ | LOW level input voltage |  | - | - | 1.5 | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{IH}}$ | HIGH level input voltage |  | 3.0 | - | 5.5 | V |
| I | input current | $\mathrm{V}_{27}$ and $\mathrm{V}_{28}=0.4 \mathrm{~V}$ | -10 | - | - | $\mu \mathrm{A}$ |
|  |  | $\mathrm{V}_{27}$ and $\mathrm{V}_{28}=0.9 \mathrm{~V}_{\mathrm{P}}$ | - | - | 10 | $\mu \mathrm{~A}$ |

Output level (pin 27)

| $\mathrm{V}_{\mathrm{OL}}$ | LOW level output voltage |  | - | - | 0.4 | V |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{I}_{\mathrm{O}}$ | output current | $\mathrm{V}_{27}=0.4 \mathrm{~V}$ | 3.0 | - | - | mA |

## RGB video processor with automatic cut-off control and gamma adjust

## Notes to the characteristics

1. RGB signals controlled by saturation, adaptive black, contrast and brightness. Gamma affects the Y component of the internal RGB signals.
2. Adaptive black control acts on $Y$ signal, which is either $Y$ input or $Y$ output from RGB matrix. Negative set-up is not affected. The level shift value is determined by the peak dark detector, operation selected by control bit ADBL. The peak dark detector is inactive during blanking. Peak dark detector activated by internal line counter, which starts after the end of the vertical blank of the sandcastle. Active from line 16 (after end of vertical sandcastle) to line 224 ( NTSC mode, $\mathrm{NMEN}=1$ ) or line 272 ( PAL mode, $\mathrm{NMEN}=0$ ). It is recommended to increase the contrast value (subaddress 02 H ) by $15 \%$ if $\mathrm{ADBL}=1$. The line numbers are doubled if control bit HDTV $=1$.
3. At minimum gamma (3FH) any differences in black level steps are amplified by 6 dB .
4. For nominal saturation the range of values is:
a) 1 FH is the minimum value that can be used
b) 20 H is the typical value that can be used
c) 21 H is the maximum value that can be used.
5. For nominal contrast the range of values is:
a) 20 H is the minimum value that can be used
b) 22 H is the typical value that can be used
c) 24 H is the maximum value that can be used.
6. $\frac{\Delta \mathrm{V}}{\mathrm{V}_{\text {nom }}}=\frac{\Delta \mathrm{V}_{24}}{\mathrm{~V}_{\text {nom24 }}}-\frac{\Delta \mathrm{V}_{22}}{\mathrm{~V}_{\text {nom22 }}}=\frac{\Delta \mathrm{V}_{24}}{\mathrm{~V}_{\text {nom24 }}}-\frac{\Delta \mathrm{V}_{20}}{\mathrm{~V}_{\text {nom20 }}}=\frac{\Delta \mathrm{V}_{22}}{\mathrm{~V}_{\text {nom22 }}}-\frac{\Delta \mathrm{V}_{20}}{\mathrm{~V}_{\text {nom20 }}}$. For meaning of actual nominal signal see chapter "Characteristics".
7. Series resistor in supply voltage should be less than $0.3 \Omega$.
8. At 1.0 V cut-off measurement level the function of the cut-off control loop is not guaranteed because the blanking level is limited to the minimum output voltage. For proper working a guide number for the minimum cut-off measurement level is 1.3 V .
9. For nominal $A C$ gain settings the range of values is:
a) 21 H is the minimum value that can be used
b) 22 H is the typical value that can be used
c) 23 H is the maximum value that can be used.
10. $\frac{\Delta \mathrm{V}}{\mathrm{V}_{\text {nom }}}=\frac{\Delta \mathrm{V}_{24}}{\mathrm{~V}_{\text {nom24 }}}-\frac{\Delta \mathrm{V}_{22}}{\mathrm{~V}_{\text {nom22 }}}=\frac{\Delta \mathrm{V}_{24}}{\mathrm{~V}_{\text {nom24 }}}-\frac{\Delta \mathrm{V}_{20}}{\mathrm{~V}_{\text {nom20 }}}=\frac{\Delta \mathrm{V}_{22}}{\mathrm{~V}_{\text {nom22 }}}-\frac{\Delta \mathrm{V}_{20}}{\mathrm{~V}_{\text {nom20 }}}$. For meaning of actual nominal signal see chapter "Characteristics".
11. Sandcastle pulse detector (pin 14)

The sandcastle pulse is compared with 3 (control bit SC5 $=0$ ) or $2(S C 5=1)$ internal threshold levels to separate the various pulses; the internal pulses are generated while the input is higher than the thresholds. The thresholds are independent of supply voltage and temperature.

## RGB video processor with automatic cut-off control and gamma adjust

12. Blanking to ultra black level occurs during time DG except MR in R-channel, MG in G-channel, MB in B-channel (see Fig.10).
a) Leakage current measuring time:

LM will start after the end of vertical sandcastle (see Fig.10).
b) Vertical blanking period and cut-off measurement lines (see Fig.10):

The vertical component will be identified if it contains 2 or more burst key pulses in the event of SC5 = 1 or two or more line pulses $(\mathrm{H})$ in the event of $\mathrm{SC} 5=0$. The line counter is triggered by the leading edge.
The blanking time is valid for a vertical pulse detected by the sandcastle decoder.
The internal blank pulse is OR gated with the sandcastle vertical pulse and the end of the measurement pulses.
c) Insertion time: full line period.
d) Measurement time: line period minus horizontal period $(50 / 60 \mathrm{~Hz})$.
e) Line sequence of measuring lines (see Fig.10):

First line after end of horizontal pulse which followed the end of vertical pulse: leakage measurement LM
First line after leakage measurement pulse: red measurement MR
Second line after leakage measurement pulse: green measurement MG
Third line after leakage measurement pulse: blue measurement MB.
13. Y output can be switched to hue adjust output via $I^{2} C$-bus control bit YEXH. Output without sync pulse. Recommendation: Hue adjust DAC set to 3FH. Black level adjustable via hue adjust DAC.
14. Output can be switched to Y output via $\mathrm{I}^{2} \mathrm{C}$-bus control bit YEXH (via $\mathrm{I}^{2} \mathrm{C}$-bus, resolution 6-bit, bus subaddress 03 H ).

RGB video processor with automatic cut-off control and gamma adjust

## INTERNAL PIN CONFIGURATIONS

Abbreviations: OB: Open Base and CL: Clamp Pulse.

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 1 | fast switch 2 input |  |  |  |
| 2 | red input 2 |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |
| 3 | green input 2 |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |

RGB video processor with automatic cut-off control and gamma adjust

TDA4780

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 4 | blue input 2 |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |
| 5 | supply voltage |  |  |  |
| 6 | colour difference input -(B - Y) |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |

RGB video processor with automatic cut-off control and gamma adjust

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 7 | colour difference input -(R - Y) |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |
| 8 | luminance input |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |
| 9 | ground |  |  | no ESD protection circuit for ground pin |

RGB video processor with automatic cut-off control and gamma adjust

TDA4780

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 10 | red input 1 |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |
| 11 | green input 1 |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |
| 12 | blue input 1 |  | $100 \mu \mathrm{~A} / \mathrm{OB}$ |  |

RGB video processor with automatic cut-off control and gamma adjust

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 13 | fast switch 1 input |  |  |  |
| 14 | sandcastle pulse input | 3-level sandcastle <br> 2-level sandcastle | $37 \mathrm{k} \Omega$ $(\mathrm{SC} 5=0)$ <br> OB $(\mathrm{SC} 5=1)$ |  |
| 15 | average beam current limiting input |  | OB |  |

RGB video processor with automatic cut-off control and gamma adjust

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 16 | storage capacitor for peak limiting | outside peak drive | OB |  |
|  |  | during peak drive (RELC = 1) | 0 to 12 mA |  |
|  |  | during peak drive ( $\mathrm{RELC}=0$ ) | 5 mA |  |
|  |  |  |  |  |
| 17 | storage capacitor for leakage current compensation | outside leakage current measurement | OB |  |
|  |  | during leakage current measurement | $\begin{aligned} & \hline-400 \mu \mathrm{~A} \text { to } \\ & +400 \mu \mathrm{~A} \\ & \hline \end{aligned}$ |  |
|  |  | automatic switch to power on reset | 4 mA |  |

RGB video processor with automatic cut-off control and gamma adjust

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 18 | storage capacitor for peak dark |  | OB/0.26 mA |  |
| 19 | cut-off measurement input |  | $\begin{aligned} & -300 \mu \mathrm{~A} \text { to } \\ & +300 \mu \mathrm{~A} \end{aligned}$ |  |

RGB video processor with automatic cut-off control and gamma adjust

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 20 | blue output |  | 5 mA |  |
|  |  |  | 5 mA |  |
|  |  |  | 5 mA |  |
| 21 | blue cut-off storage capacitor | during cut-off control or during output clamping | OB |  |
|  |  |  | $\begin{aligned} & -300 \mu \mathrm{~A} \text { to } \\ & +300 \mu \mathrm{~A} \end{aligned}$ |  |

RGB video processor with automatic cut-off control and gamma adjust

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 22 | green output |  | 5 mA |  |
|  |  |  | 5 mA |  |
|  |  |  | 5 mA |  |
| 23 | green cut-off storage capacitor | during cut-off control or during output clamping | OB |  |
|  |  |  | $\begin{aligned} & -300 \mu \mathrm{~A} \text { to } \\ & +300 \mu \mathrm{~A} \end{aligned}$ |  |

RGB video processor with automatic cut-off control and gamma adjust

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 24 | red output |  | 5 mA |  |
|  |  |  | 5 mA |  |
|  |  |  | 5 mA |  |
| 25 | red cut-off storage capacitor | during cut-off control or during output clamping | OB |  |
|  |  |  | $\begin{aligned} & -300 \mu \mathrm{~A} \text { to } \\ & +300 \mu \mathrm{~A} \end{aligned}$ |  |

RGB video processor with automatic cut-off control and gamma adjust

| PIN | PIN NAME (DESCRIPTION) | WAVE FORM | I or Z | INTERNAL CIRCUIT |
| :---: | :---: | :---: | :---: | :---: |
| 26 | Y output/hue adjust output |  | $\begin{gathered} 0.7 \mathrm{~mA} \\ \\ \\ 0.7 \mathrm{~mA} \end{gathered}$ |  |
| 27 | ${ }^{1} 2 \mathrm{C}$-bus serial data input/acknowledge output | outside acknowledge | OB |  |
|  |  | during acknowledge | less than 0.1 V up to 4 mA due to external pull-up resistor |  |
| 28 | ${ }^{2}$ ²-bus serial clock input |  | OB |  |

RGB video processor with automatic cut-off control and gamma adjust


[^0]RGB video processor with automatic cut-off control and gamma adjust

## PACKAGE OUTLINE

DIP28: plastic dual in-line package; 28 leads ( 600 mil )
SOT117-1
DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\underset{\text { max. }}{ }$ | $\mathrm{A}_{1}$ min. | $\mathrm{A}_{2}$ max. | b | $\mathrm{b}_{1}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{e}_{1}$ | L | $\mathrm{M}_{\mathrm{E}}$ | $\mathrm{M}_{\mathrm{H}}$ | w | $\begin{aligned} & \mathrm{Z}^{(1)} \\ & \max . \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 5.1 | 0.51 | 4.0 | $\begin{aligned} & 1.7 \\ & 1.3 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 36.0 \\ & 35.0 \end{aligned}$ | $\begin{aligned} & 14.1 \\ & 13.7 \end{aligned}$ | 2.54 | 15.24 | $\begin{aligned} & 3.9 \\ & 3.4 \end{aligned}$ | $\begin{aligned} & \hline 15.80 \\ & 15.24 \end{aligned}$ | $\begin{aligned} & 17.15 \\ & 15.90 \end{aligned}$ | 0.25 | 1.7 |
| inches | 0.20 | 0.020 | 0.16 | $\begin{aligned} & 0.066 \\ & 0.051 \end{aligned}$ | $\begin{aligned} & 0.020 \\ & 0.014 \end{aligned}$ | $\begin{aligned} & 0.013 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & 1.41 \\ & 1.34 \end{aligned}$ | $\begin{aligned} & 0.56 \\ & 0.54 \end{aligned}$ | 0.10 | 0.60 | $\begin{aligned} & 0.15 \\ & 0.13 \end{aligned}$ | $\begin{aligned} & 0.62 \\ & 0.60 \end{aligned}$ | $\begin{aligned} & 0.68 \\ & 0.63 \end{aligned}$ | 0.01 | 0.067 |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | EIAJ |  |  |
| SOT117-1 | 051G05 | MO-015AH |  | $\square$ ¢ | $\begin{aligned} & 92-11-17 \\ & 95-01-14 \end{aligned}$ |

## RGB video processor with automatic cut-off control and gamma adjust

## SOLDERING

## Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.
This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our "IC Package Databook" (order code 9398652 90011).

## Soldering by dipping or by wave

The maximum permissible temperature of the solder is $260^{\circ} \mathrm{C}$; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ( $\mathrm{T}_{\text {stg max }}$ ). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

## Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V ) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300^{\circ} \mathrm{C}$ it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and $400^{\circ} \mathrm{C}$, contact may be up to 5 seconds.

# RGB video processor with automatic cut-off control and gamma adjust 

## DEFINITIONS

| Data sheet status |  |
| :--- | :--- |
| Objective specification | This data sheet contains target or goal specifications for product development. |
| Preliminary specification | This data sheet contains preliminary data; supplementary data may be published later. |
| Product specification | This data sheet contains final product specifications. |
| Limiting values | Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or <br> more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation <br> of the device at these or at any other conditions above those given in the Characteristics sections of the specification <br> is not implied. Exposure to limiting values for extended periods may affect device reliability. |
| Application information |  |
| Where application information is given, it is advisory and does not form part of the specification. |  |

## LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

## PURCHASE OF PHILIPS I²C COMPONENTS



Purchase of Philips $I^{2} \mathrm{C}$ components conveys a license under the Philips' $\mathrm{I}^{2} \mathrm{C}$ patent to use the components in the $I^{2} \mathrm{C}$ system provided the system conforms to the $\mathrm{I}^{2} \mathrm{C}$ specification defined by Philips. This specification can be ordered using the code 939839340011.

# Philips Semiconductors - a worldwide company 

Argentina: see South America
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,
Tel. +61 29805 4455, Fax. +61 298054466
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,
Tel. +43 160 101, Fax. +43 1601011210
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6, 220050 MINSK, Tel. +375 172200 733, Fax. +375 172200773
Belgium: see The Netherlands
Brazil: see South America
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor, 51 James Bourchier Blvd., 1407 SOFIA,
Tel. +359 2689 211, Fax. +359 2689102
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS, Tel. +1 8002347381
China/Hong Kong: 501 Hong Kong Industrial Technology Centre, 72 Tat Chee Avenue, Kowloon Tong, HONG KONG,
Tel. +852 2319 7888, Fax. +852 23197700
Colombia: see South America
Czech Republic: see Austria
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S, Tel. +45 3288 2636, Fax. +45 31571949
Finland: Sinikalliontie 3, FIN-02630 ESPOO,
Tel. +358 9 615800, Fax. +358 9 61580/xxx
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex, Tel. +33 14099 6161, Fax. +33 140996427
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,
Tel. +49 402353 60, Fax. +49 4023536300
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,
Tel. +30 14894 339/239, Fax. +30 14814240
Hungary: see Austria
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd. Worli, MUMBAI 400 018, Tel. +91 224938 541, Fax. +91 224938722

## Indonesia: see Singapore

Ireland: Newstead, Clonskeagh, DUBLIN 14,
Tel. +353 17640 000, Fax. +353 17640200
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180, Tel. +972 3645 0444, Fax. +972 36491007
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,
20124 MILANO, Tel. +39 26752 2531, Fax. +39 267522557
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108, Tel. +81 33740 5130, Fax. +81 337405077
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL, Tel. +82 2709 1412, Fax. +82 27091415
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR, Tel. +60 3750 5214, Fax. +60 37574880
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,
Tel. +9-5 8002347381
Middle East: see Italy

Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,
Tel. +31402782785, Fax. +31402788399
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND, Tel. +64 9849 4160, Fax. +64 98497811
Norway: Box 1, Manglerud 0612, OSLO,
Tel. +472274 8000, Fax. +4722748341
Philippines: Philips Semiconductors Philippines Inc.,
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,
Metro MANILA, Tel. +63 2816 6380, Fax. +63 28173474
Poland: UI. Lukiska 10, PL 04-123 WARSZAWA,
Tel. +48 22612 2831, Fax. +48 226122327
Portugal: see Spain
Romania: see Italy
Russia: Philips Russia, UI. Usatcheva 35A, 119048 MOSCOW,
Tel. +7 095755 6918, Fax. +7 0957556919
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,
Tel. +65 350 2538, Fax. +65 2516500
Slovakia: see Austria
Slovenia: see Italy
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale, 2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000, Tel. +27 11470 5911, Fax. +27 114705494
South America: Rua do Rocio 220, 5th floor, Suite 51, 04552-903 São Paulo, SÃO PAULO - SP, Brazil,
Tel. +55 11821 2333, Fax. +55 118291849
Spain: Balmes 22, 08007 BARCELONA,
Tel. +34 3301 6312, Fax. +34 33014107
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,
Tel. +46 8632 2000, Fax. +46 86322745
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,
Tel. +41 1488 2686, Fax. +41 14817730
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1, TAIPEI, Taiwan Tel. +886 22134 2870, Fax. +886 221342874
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,
Tel. +662745 4090, Fax. +66 23980793
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL, Tel. +90 212279 2770, Fax. +90 2122826707
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7, 252042 KIEV, Tel. +380 44264 2776, Fax. +380442680461
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes, MIDDLESEX UB3 5BX, Tel. +44 181730 5000, Fax. +44 1817548421
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409, Tel. +1 8002347381
Uruguay: see South America
Vietnam: see Singapore
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,
Tel. +381 11625 344, Fax.+381 11635777

For all other countries apply to: Philips Semiconductors, Marketing \& Sales Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 402724825
© Philips Electronics N.V. 1997
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license under patent- or other industrial or intellectual property rights.

PHILIPS


[^0]:    Fig. 12 Test and application circuit.

