6N137, HCNW137, HCNW2601, HCNW2611, HCPL-0600, HCPL-0601, HCPL-0611, HCPL-0630, HCPL-0631, HCPL-0661, HCPL-2601, HCPL-2611, HCPL-2630, HCPL-2631, HCPL-4661
 High CMR, High Speed TTL Compatible Optocouplers

Data Sheet

Description

The 6N137, HCPL-26xx/06xx/4661, HCNW137/26x1 are optically coupled gates that combine a GaAsP light emitting diode and an integrated high gain photo detector. An enable input allows the detector to be strobed. The output of the detector IC is an open collector Schottkyclamped transistor. The internal shield provides a guaranteed common mode transient immunity specification up to $15,000 \mathrm{~V} / \mu \mathrm{s}$ at $\mathrm{V}_{\mathrm{cm}}=1000 \mathrm{~V}$.
This unique design provides maximum $A C$ and $D C$ circuit isolation while achieving TTL compatibility. The optocoupler AC and DC operational parameters are guaranteed from $-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ allowing troublefree system performance.
Functional Diagram

$\begin{aligned} & \text { TRUTH TABLE } \\ & \text { (POSITIVE LOGIC) } \end{aligned}$		
LED	ENABLE	OUTPUT
ON	H	L
OFF	H	H
ON	L	H
OFF	L	H
ON	NC	L
OFF	NC	H

TRUTH TABLE
(POSITIVE LOGIC)

LED	OUTPUT
ON	L
OFF	H

A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8.

Features

- $15 \mathrm{kV} / \mu \mathrm{s}$ minimum Common Mode Rejection (CMR) at $\mathrm{V}_{\mathrm{CM}}=1 \mathrm{kV}$ for HCNW2611, HCPL-2611, HCPL-4661, HCPL-0611, HCPL-0661
- High speed: 10 MBd typical
- LSTTL/TTL compatible
- Low input current capability: 5 mA
- Guaranteed AC and DC performance over temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
- Available in 8-Pin DIP, SOIC-8, widebody packages
- Strobable output (single channel products only)
- Safety approval

UL recognized - $3750 \mathrm{~V}_{\mathrm{rms}}$ for 1 minute and $5000 \mathrm{~V}_{\mathrm{rms}}{ }^{*}$ for 1 minute per UL1577 CSA approved IEC/EN/DIN EN 60747-5-5 approved with

$$
\begin{aligned}
& V_{\text {IORM }}=567 \mathrm{~V}_{\text {peak }} \text { for 06xx Option } 060 \\
& V_{\text {IORM }}=630 \mathrm{~V}_{\text {peak }} \text { for 6N137/26xx Option } 060 \\
& V_{\text {IORM }}=1414 \mathrm{~V}_{\text {peak }} \text { for HCNW137/26x1 }
\end{aligned}
$$

- MIL-PRF-38534 hermetic version available (HCPL-56xx/66xx)

Applications

- Isolated line receiver
- Computer-peripheral interfaces
- Microprocessor system interfaces
- Digital isolation for A/D, D/A conversion
- Switching power supply
- Instrument input/output isolation
- Ground loop elimination
- Pulse transformer replacement
- Power transistor isolation in motor drives
- Isolation of high speed logic systems
*5000 $\mathrm{V}_{\text {rms }} / 1$ Minute rating is for HCNW137/26X1 and Option 020 (6N137, HCPL-2601/11/30/31, HCPL-4661) products only.

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

The6N137,HCPL-26xx,HCPL-06xx,HCPL-4661,HCNW137, and HCNW26x1 are suitable for high speed logic interfacing, input/output buffering, as line receivers in environments that conventional line receivers cannot tolerate and are recommended for use in extremely high ground or induced noise environments.

Selection Guide

Minimum CMR		Input On- Current (mA)	Output Enable	8-Pin DIP (300 Mil)		Small-Outline S0-8		Widebody (400 Mil) Single Channel Package	HermeticSingleand DualChannelPackages
dV/dt (V/ $/ \mathrm{s}$)	$\begin{aligned} & V_{c M} \\ & (V) \end{aligned}$			Single Channel Package	Dual Channel Package	Single Channel Package	Dual Channel Package		
1000	10	5	YES	6N137					
5,000	1,000	5	YES			HCPL-0600		HCNW137	
			NO		HCPL-2630		HCPL-0630		
10,000	1,000		YES	HCPL-2601		HCPL-0601		HCNW2601	
			NO		HCPL-2631		HCPL-0631		
15,000	1,000		YES	HCPL-2611		HCPL-0611		HCNW2611	
			NO		HCPL-4661		HCPL-0661		
1,000	50		YES	HCPL-2602 ${ }^{[1]}$					
3,500	300		YES	HCPL-2612 ${ }^{[1]}$					
1,000	50	3	YES	HCPL-261A ${ }^{[1]}$		HCPL-061A ${ }^{(1)}$			
			NO		HCPL-263A ${ }^{[1]}$		HCPL-063A ${ }^{(1)}$		
$1,000{ }^{[2]}$	1,000		YES	HCPL-261N ${ }^{[1]}$		HCPL-061N ${ }^{[1]}$			
			NO		HCPL-263N ${ }^{[1]}$		HCPL-063N ${ }^{[1]}$		
1,000	50	12.5	[3]						HCPL-193x ${ }^{[1]}$ HCPL-56xx ${ }^{[1]}$ HCPL-66xx ${ }^{[1]}$

Notes:

1. Technical data are on separate Avago publications.
2. $15 \mathrm{kV} / \mu \mathrm{s}$ with $\mathrm{V}_{\mathrm{cm}}=1 \mathrm{kV}$ can be achieved using Avago application circuit.
3. Enable is available for single channel products only, except for HCPL-193x devices.

Ordering Information

HCPL-xxxx is UL Recognized with $3750 \mathrm{~V}_{\text {rms }}$ for 1 minute per UL1577.
HCNWxxxx is UL Rcognized with $5000 \mathrm{~V}_{\mathrm{rms}}^{\mathrm{mm}}$ for 1 minute per UL1577.

Part Number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	$\begin{aligned} & \text { UL } 5000 \text { V }_{\text {rus }} / \\ & 1 \text { Minute } \\ & \text { Rating } \end{aligned}$	IEC/EN/DIN EN 60747-5-5	Quantity
	RoHS Compliant	Non RoHS Compliant							
6N137	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	\#320		X	X		X		50 per tube
	-520E	\#520		X	X	X	X		1000 per reel
	-060E	\#060						X	50 per tube
	-560E	-560		X	X	X		X	1000 per reel
HCPL-2601	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	\#320		X	X		X		50 per tube
	-520E	\#520		X	X	X	X		1000 per reel
	-060E	\#060						X	50 per tube
	-360E	-		X	X			X	50 per tube
HCPL-2611	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	\#320		X	X		X		50 per tube
	-520E	\#520		X	X	X	X		1000 per reel
	-060E	\#060						X	50 per tube
	-360E	\#360		X	X			X	50 per tube
	-560E	\#560		X	X	X		X	1000 per reel
HCPL-2630	-000E	No option	300 mil DIP-8						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	\#320		x	X		X		50 per tube
	-520E	-520		X	X	X	X		1000 per reel
$\begin{aligned} & \text { HCPL-2631 } \\ & \text { HCPL-4661 } \end{aligned}$	-000E	No option	$\begin{gathered} 300 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$						50 per tube
	-300E	\#300		X	X				50 per tube
	-500E	\#500		X	X	X			1000 per reel
	-020E	\#020					X		50 per tube
	-320E	\#320		X	X		X		50 per tube
	-520E	\#520		X	X	X	X		1000 per reel

Part Number	Option		Package	Surface Mount	Gull Wing	Tape \& Reel	$\begin{aligned} & \text { UL } 5000 \mathrm{~V}_{\mathrm{rms}} \text { I } \\ & 1 \text { Minute } \\ & \text { Rating } \end{aligned}$	IEC/EN/DIN EN 60747-5-5	Quantity
	RoHS Compliant	Non RoHS Compliant							
HCPL-0600 HCPL-0601 HCPL-0611	-000E	No option	SO-8	X					100 per tube
	-500E	\#500		X		X			1500 per reel
	-060E	\#060		X				X	100 per tube
	-560E	\#560		X		X		X	1500 per reel
HCPL-0630	-000E	No option	SO-8	X					100 per tube
$\begin{aligned} & \text { HCPL-0631 } \\ & \text { HCPL-0661 } \end{aligned}$	-500E	\#500		X		X			1500 per reel
HCNW137	-000E	No option	$\begin{gathered} 400 \mathrm{mil} \\ \text { DIP-8 } \end{gathered}$				X	X	42 per tube
HCNW2601	-300E	\#300		X	X		X	X	42 per tube
HCNW2611	-500E	\#500		X	X	X	X	X	750 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry. Combination of Option 020 and Option 060 is not available.

Example 1:
HCPL-2611-560E to order product of 300mil DIP Gull Wing Surface Mount package in Tape and Reel packag ing with IEC/EN/DIN EN 60747-5-5 Safety Approval in RoHS compliant.
Example 2:
HCPL-2630 to order product of 300 mil DIP package in tube packaging and non RoHS compliant.
Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.
Notes:
The notation '\#xxx' is used for existing products, while (new) products launched since July 15, 2001 and RoHS compliant option will use'-xxxE'.

Schematic

Package Outline Drawings
8-pin DIP Package** (6N137, HCPL-2601/11/30/31, HCPL-4661)

**JEDEC Registered Data (for 6N137 only).

DIMENSIONS IN MILLIMETERS (INCHES). *MARKING CODE LETTER FOR OPTION NUMBERS "L" = OPTION 020
"V" = OPTION 060
OPTION NUMBERS 300 AND 500 NOT MARKED.
NOTE: FLOATING LEAD PROTRUSION IS 0.25 mm (10 mils) MAX.

8-pin DIP Package with Gull Wing Surface Mount Option 300 (6N137, HCPL-2601/11/30/31, HCPL-4661)

* TOTAL PACKAGE LENGTH (INCLUSIVE OF MOLD FLASH)
5.207 ± 0.254 (0.205 ± 0.010)
DIMENSIONS IN MILLIMETERS (INCHES).
LEAD COPLANARITY $=0.10 \mathrm{~mm}$ (0.004 INCHES) MAX.
NOTE: FLOATING LEAD PROTRUSION IS 0.15 mm (6 mils) MAX.

8-Pin Widebody DIP Package (HCNW137, HCNW2601/11)

Test Rating Code, Z	Optional Identification Code
L - Option $\times 2 x$	A - Avago
V - Option $x 5 x$ or $\times 6 x$	PU - UL Logo
	P - Special Program Code

Reflow Soldering Profile

The recommended reflow soldering conditions are per JEDEC Standard J-STD-020 (latest revision). Non-halide flux should be used.

Regulatory Information

The 6N137, HCPL-26xx/06xx/46xx, and HCNW137/26xx have been approved by the following organizations:
UL
IEC/EN/DIN EN 60747-5-5
Recognized under UL 1577, Component Recognition Program, File E55361.

CSA

Approved under CSA Component Acceptance Notice \#5, File CA 88324.

Insulation and Safety Related Specifications

Parameter Symbol	8-pin DIP (300 Mil) Value	$\begin{aligned} & \text { SO-8 } \\ & \text { Value } \end{aligned}$	$\begin{aligned} & \hline \text { Widebody } \\ & \text { (400 Mil) } \\ & \text { Value } \end{aligned}$	Unit	Conditions
Minimum External $\mathrm{L}(101)$ Air Gap (External Clearance) 	7.1	4.9	9.6	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External $\mathrm{L}(102)$ Tracking (External Creepage)	7.4	4.8	10.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)	0.08	0.08	1.0	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity.
Minimum Internal Tracking (Internal Creepage)	NA	NA	4.0	mm	Measured from input terminals to output terminals, along internal cavity.
Tracking Resistance CTI (Comparative Tracking Index)	200	200	200	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group	IIIa	IIIa	Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Option 300 - surface mount classification is Class A in accordance with CECC 00802.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*
(HCPL-06xx Option 060 Only)

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110, Table 1 for rated mains voltage $\leq 150 \mathrm{~V}_{\mathrm{rms}}$		I-IV	
for rated mains voltage $\leq 300 \mathrm{~V}_{\text {rms }}$		I-IV	
for rated mains voltage $\leq 600 \mathrm{~V}_{\text {rms }}$		I-III	
Climatic Classification		40/85/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	567	$\mathrm{V}_{\text {peak }}$
Input-to-Output Test Voltage, Method b* $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR' }} 100 \%$ Production Test with $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, Partial Discharge < 5 pC	$V_{\text {PR }}$	1063	$\mathrm{V}_{\text {peak }}$
$\begin{aligned} & \text { Input-to-Output Test Voltage, Method } \mathrm{a}^{*} \\ & \mathrm{~V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR' }} \text {, } \text { 'ype and Sample Test, } \mathrm{t}_{\mathrm{m}}=10 \mathrm{sec} \text {, } \\ & \text { Partial Discharge }<5 \mathrm{pC} \\ & \hline \end{aligned}$	$V_{\text {PR }}$	907	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {Іотм }}$	6000	$\mathrm{V}_{\text {peak }}$
Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Input Current** Output Power**		$\begin{aligned} & 150 \\ & 150 \\ & 600 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$
Insulation Resistance at $\mathrm{T}_{\mathrm{s}^{\prime}} \mathrm{V}_{10}=500 \mathrm{~V}$	R_{s}	$\geq 10^{9}$	Ω

*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description.

Note: Isolation characteristics are guaranteed only within the safety maximum ratings which must be ensured by protective circuits in application.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics*
(HCPL-26xx; 46xx; 6N13x Option 060 Only)

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110, Table 1 for rated mains voltage $\leq 300 \mathrm{~V}_{\text {rmc }}$		I-IV	
for rated mains voltage $\leq 450 \mathrm{~V}_{\text {rms }}$		I-IV	
Climatic Classification		40/85/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	630	$\mathrm{V}_{\text {peak }}$
$\begin{aligned} & \text { Input to Output Test Voltage, Method } \mathrm{b}^{*} \\ & \mathrm{~V}_{\text {IRMM }} \times 1.875=\mathrm{V}_{\text {PR }}, 100 \% \text { Production Test with } \mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}, \\ & \text { Partial Discharge }<5 \mathrm{pC} \end{aligned}$	$V_{\text {PR }}$	1181	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR' }}$ Type and sample test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial Discharge < 5 pC	$V_{\text {PR }}$	1008	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {Іотм }}$	6000	$\mathrm{V}_{\text {peak }}$
Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Input Current Output Power	$\begin{gathered} \mathrm{T}_{\mathrm{s}} \\ \mathrm{I}_{\mathrm{s}, \text { INUT }} \\ \mathrm{P}_{\mathrm{s}, \text { OUTPUT }} \end{gathered}$	$\begin{aligned} & 175 \\ & 230 \\ & 600 \end{aligned}$	${ }^{\circ} \mathrm{C}$ mA mW
Insulation Resistance at $\mathrm{T}_{\mathrm{s}^{\prime}} \mathrm{V}_{10}=500 \mathrm{~V}$	R_{5}	$\geq 10^{9}$	Ω

*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in application.

IEC/EN/DIN EN 60747-5-5 Insulation Characteristics* (HCNW137/2601/2611 Only)

Description	Symbol	Characteristic	Unit
Installation classification per DIN VDE 0110, Table 1 for rated mains voltage $\leq 600 \mathrm{~V}_{\mathrm{rms}}$		I-IV	
for rated mains voltage $\leq 1000 \mathrm{~V}_{\text {rms }}$		I-III	
Climatic Classification		40/85/21	
Pollution Degree (DIN VDE 0110/39)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	1414	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method b* $\begin{aligned} & \mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\text {PR' }} 100 \% \text { Production Test with } \mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}, \\ & \text { Partial Discharge }<5 \mathrm{pC} \end{aligned}$	$V_{\text {PR }}$	2651	$\mathrm{V}_{\text {peak }}$
Input to Output Test Voltage, Method a* $\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\mathrm{PR}^{\prime}}$ Type and sample test, $\mathrm{t}_{\mathrm{m}}=10 \mathrm{sec}$, Partial Discharge < 5 pC	$V_{\text {PR }}$	2262	$\mathrm{V}_{\text {peak }}$
Highest Allowable Overvoltage (Transient Overvoltage, $\mathrm{t}_{\text {ini }}=60 \mathrm{sec}$)	$\mathrm{V}_{\text {Іотм }}$	8000	$\mathrm{V}_{\text {peak }}$
Safety Limiting Values (Maximum values allowed in the event of a failure) Case Temperature Input Current Output Power	$\begin{gathered} \mathrm{T}_{\mathrm{S}} \\ \mathrm{I}_{\mathrm{S}, \text { INPUT }} \\ \mathrm{P}_{\mathrm{S}, \text { OUTPUT }} \end{gathered}$	$\begin{aligned} & 150 \\ & 400 \\ & 700 \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$
Insulation Resistance at $\mathrm{S}_{\mathrm{S}^{\prime}} \mathrm{V}_{10}=500 \mathrm{~V}$	R_{s}	$\geq 10^{9}$	Ω

*Refer to the front of the optocoupler section of the current catalog, under Product Safety Regulations section, IEC/EN/DIN EN 60747-5-5, for a detailed description.
Note: Isolation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits in application.

Absolute Maximum Ratings* (No Derating Required up to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Package**	Min.	Max.	Units	Note
Storage Temperature	T_{s}		-55	125	${ }^{\circ} \mathrm{C}$	
Operating Temperature ${ }^{\dagger}$	$\mathrm{T}_{\text {A }}$		-40	85	${ }^{\circ} \mathrm{C}$	
Average Forward Input Current	I_{F}	Single 8-Pin DIP Single SO-8 Widebody		20	mA	2
		Dual 8-Pin DIP Dual SO-8		15		1,3
Reverse Input Voltage	$V_{\text {R }}$	8-Pin DIP, SO-8		5	V	1
		Widebody		3		
Input Power Dissipation	P_{1}	Widebody		40	mW	
Supply Voltage (1 Minute Maximum)	V_{cc}			7	V	
Enable Input Voltage (Not to Exceed $V_{\text {cc }}$ by more than 500 mV)	$V_{\text {E }}$	Single 8-Pin DIP Single SO-8 Widebody		$\mathrm{V}_{\text {cc }}+0.5$	V	
Enable Input Current	I_{E}			5	mA	
Output Collector Current	I_{0}			50	mA	1
Output Collector Voltage	V_{0}			7	V	1
Output Collector Power Dissipation	$\mathrm{P}_{\text {o }}$	Single 8-Pin DIP Single SO-8 Widebody		85	mW	
		Dual 8-Pin DIP Dual SO-8		60		1,4
Lead Solder Temperature (Through Hole Parts Only)	$\mathrm{T}_{\text {LS }}$	8-Pin DIP	$260^{\circ} \mathrm{C}$ for 10 sec ., 1.6 mm below seating plane			
		Widebody	$260^{\circ} \mathrm{C}$ for 10 sec ., up to seating plane			
Solder Reflow Temperature Profile (Surface Mount Parts Only)		SO-8 and Option 300	See Package Outline Drawings section			

*JEDEC Registered Data (for 6N137 only).
**Ratings apply to all devices except otherwise noted in the Package column.
$+0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ on JEDEC Registration.

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Input Current, Low Level	IFL^{*}	0	250	$\mu \mathrm{A}$
Input Current, High Level ${ }^{[1]}$	$\mathrm{IFH}^{* *}$	5	15	mA
Power Supply Voltage	$\mathrm{V}_{\text {cc }}$	4.5	5.5	V
Low Level Enable Voltage ${ }^{\dagger}$	$\mathrm{V}_{\text {EL }}$	0	0.8	V
High Level Enable Voltage ${ }^{\dagger}$	V_{EH}	2.0	$\mathrm{V}_{\text {cc }}$	V
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Fan Out (at $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k}$) ${ }^{[1]}$	N		5	TTL Loads
Output Pull-up Resistor	R_{L}	330	4 k	Ω

*The off condition can also be guaranteed by ensuring that $\mathrm{V}_{\mathrm{FL}} \leq 0.8 \mathrm{~V}$.
${ }^{* *}$ The initial switching threshold is 5 mA or less. It is recommended that 6.3 mA to 10 mA be used for best performance and to permit at least a 20% LED degradation guardband.
\dagger For single channel products only.

Electrical Specifications

Over recommended temperature $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$) unless otherwise specified. All Typicals at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. All enable test conditions apply to single channel products only. See note 5.

Parameter	Sym.	Package	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
High Level Output Current	IOH^{*}	All		5.5	100		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=250 \mu \mathrm{~A} \end{aligned}$	1	$\begin{gathered} \hline 1,6, \\ 19 \end{gathered}$
Input Threshold Current	$\mathrm{I}_{\text {TH }}$	Single Channel Widebody Dual Channel		2.0	5.0	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0.6 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OL}}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$	2,3	19
Low Level Output Voltage	$\mathrm{V}_{\text {L }}{ }^{*}$	8-Pin DIP SO-8 Widebody		$\begin{aligned} & 0.35 \\ & \hline 0.4 \end{aligned}$	0.6	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \\ & \mathrm{I}_{\mathrm{OL}}(\text { Sinking })=13 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 2,3, \\ & 4,5 \end{aligned}$	1,19
High Level Supply Current	$\mathrm{I}_{\text {c¢H }}$	Single Channel		$\begin{array}{\|c} \hline 7.0 \\ \hline 6.5 \\ \hline 10 \end{array}$	10.0*	mA	$\begin{aligned} & \frac{\mathrm{V}_{\mathrm{E}}=0.5 \mathrm{~V}}{\mathrm{~V}_{\mathrm{E}}=\mathrm{V}_{\mathrm{CC}}} \quad \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA} \\ & \text { Channels } \end{aligned}$		7
Low Level Supply Current	$\mathrm{I}_{\text {c¢ı }}$	Single Channel Dual Channel		$\begin{aligned} & \hline 9.0 \\ & \hline 8.5 \\ & \hline 13 \end{aligned}$	13.0^{*} 21	mA			8
High Level Enable Current	$I_{\text {EH }}$	Single Channel		-0.7	-1.6	mA	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=2.0 \mathrm{~V}$		
Low Level Enable Current	IELE^{*}			-0.9	-1.6	mA	$\mathrm{V}_{\text {CC }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{E}}=0.5 \mathrm{~V}$		9
High Level Enable Voltage	$\mathrm{V}_{\text {EH }}$		2.0			V			19
Low Level Enable Voltage	$\mathrm{V}_{\text {EL }}$				0.8	V			
Input Forward Voltage	$V_{\text {F }}$	$\begin{gathered} \hline \begin{array}{c} \text { 8-Pin DIP } \\ \text { SO-8 } \end{array} \\ \hline \text { Widebody } \end{gathered}$	$\begin{gathered} \hline 1.4 \\ \hline 1.3 \\ \hline 1.25 \\ \hline 1.2 \end{gathered}$	1.5	$\begin{gathered} \hline 1.75^{*} \\ \hline 1.80 \\ \hline 1.85 \\ \hline 2.05 \end{gathered}$	V	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	6,7	1
Input Reverse Breakdown Voltage	$B V_{R}^{*}$	$\begin{gathered} \hline \begin{array}{c} 8-P i n ~ D I P \\ \text { SO-8 } \end{array} \\ \hline \text { Widebody } \end{gathered}$	$\begin{aligned} & 5 \\ & \hline 3 \end{aligned}$			V	$\begin{aligned} & I_{R}=10 \mu \mathrm{~A} \\ & \mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		1
Input Diode Temperature Coefficient	$\begin{gathered} \hline \mathrm{DV}_{\mathrm{F}} / \\ \Delta \mathrm{T}_{\mathrm{A}} \end{gathered}$	$\begin{gathered} \hline \begin{array}{c} \text { 8-Pin DIP } \\ \text { SO-8 } \end{array} \\ \hline \text { Widebody } \end{gathered}$		-1.6 -1.9		$\mathrm{mV} /{ }^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$	7	1
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\begin{gathered} \hline \begin{array}{c} 8-P i n ~ D I P ~ \\ \text { SO-8 } \end{array} \\ \hline \text { Widebody } \end{gathered}$		60 70		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{F}}=0 \mathrm{~V}$		1

*JEDEC registered data for the 6 N 137 . The JEDEC Registration specifies $0{ }^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$. Avago specifies $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

Switching Specifications (AC)
Over Recommended Temperature $\left(\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}$ unless otherwise specified.
All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.

*JEDEC registered data for the 6N137.
**Ratings apply to all devices except otherwise noted in the Package column.

Parameter	Sym.	Device	Min.	Typ.	Units		Test Conditions	Fig.	Note
Logic High Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	6N137	1,000	10,000	V/ $\mu \mathrm{s}$	$\left\|\mathrm{V}_{\text {cM }}\right\|=10 \mathrm{~V}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{OCMIN)}}=2 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	15	$\begin{aligned} & \hline 1,16, \\ & 18,19 \end{aligned}$
		HCPL-2630	5,000	10,000		$\left\|\mathrm{V}_{\mathrm{cm}}\right\|=1 \mathrm{kV}$			
		HCPL-0600/0630							
		HCNW137							
		HCPL-2601/2631	10,000	15,000		$\left\|\mathrm{V}_{\mathrm{cm}}\right\|=1 \mathrm{kV}$			
		HCPL-0601/0631							
		HCNW2601							
		HCPL-2611/4661	15,000	25,000		$\left\|\mathrm{V}_{\mathrm{cm}}\right\|=1 \mathrm{kV}$			
		HCPL-0611/0661							
		HCNW2611							
Logic Low Common Mode Transient Immunity	$\left\|\mathrm{CM}_{\llcorner }\right\|$	6N137	1,000	10,000	V/ $\mu \mathrm{s}$	$\frac{\left\|\mathrm{V}_{\mathrm{cm}}\right\|=10 \mathrm{~V}}{\left\|\mathrm{~V}_{\mathrm{cm}}\right\|=1 \mathrm{kV}}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{F}}=7.5 \mathrm{~mA}, \\ & \mathrm{~V}_{\text {O(MAX) }}=0.8 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=350 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$	15	$\begin{aligned} & 1,17, \\ & 18,19 \end{aligned}$
		HCPL-2630	5,000	10,000					
		HCPL-0600/0630							
		HCNW137							
		HCPL-2601/2631	10,000	15,000		$\left\|\mathrm{V}_{\mathrm{cm}}\right\|=1 \mathrm{kV}$			
		HCPL-0601/0631							
		HCNW2601							
		HCPL-2611/4661	15,000	25,000		$\left\|\mathrm{V}_{\mathrm{cm}}\right\|=1 \mathrm{kV}$			
		HCPL-0611/0661							
		HCNW2611							

Package Characteristics

All Typicals at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Sym.	Package	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
Input-Output Insulation	$\mathrm{I}_{10}{ }^{\text {* }}$	Single 8-Pin DIP Single SO-8			1	$\mu \mathrm{A}$	$\begin{aligned} & 45 \% \mathrm{RH}, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{L}-\mathrm{O}}=3 \mathrm{kV} \mathrm{dc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		20,21
Input-Output Momentary Withstand Voltage**	V_{150}	8-Pin DIP, SO-8	3750			V rms	$\begin{aligned} & \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$		20,21
		Widebody	5000						20,22
		OPT 020 \dagger	5000						
Input-Output Resistance	$\mathrm{R}_{1-\mathrm{O}}$	8-Pin DIP, SO-8		10^{12}		Ω	$\frac{T_{\text {A }}=25^{\circ} \mathrm{C}}{\mathrm{T}_{\mathrm{A}}=100^{\circ} \mathrm{C}} \mathrm{V}_{1-\mathrm{O}}=500 \mathrm{~V}_{\mathrm{dc}}$		$\begin{gathered} 1,20 \\ 23 \end{gathered}$
		Widebody	10^{12}	10^{13}					
			10^{11}						
Input-Output Capacitance	$\mathrm{C}_{1-\mathrm{O}}$	8-Pin DIP, SO-8		0.6		pF	$\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		1,20,
		Widebody		0.5	0.6				23
Input-Input	I_{H}	Dual Channel		0.005		$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{RH} \leq 45 \%, \mathrm{t}=5 \mathrm{~s}, \\ & \mathrm{~V}_{\mathrm{H}}=500 \mathrm{~V} \end{aligned}$		24
Insulation Leakage Current									
Resistance (Input-Input)	R_{H}	Dual Channel		10^{11}		Ω			24
Capacitance (Input-Input)	C_{H}	Dual 8-Pin DIP		0.03		pF	$\mathrm{f}=1 \mathrm{MHz}$		24
		Dual SO-8		0.25					

${ }^{*} J E D E C$ registered data for the 6 N 137 . The JEDEC Registration specifies $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Avago specifies $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
**The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating refer to the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table (if applicable), your equipment level safety specification or Avago Application Note 1074 entitled "Optocoupler Input-Output Endurance Voltage."
tFor 6N137, HCPL-2601/2611/2630/2631/4661 only.

Notes:

1. Each channel.
2. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 20 mA .
3. Peaking circuits may produce transient input currents up to $50 \mathrm{~mA}, 50 \mathrm{~ns}$ maximum pulse width, provided average current does not exceed 15 mA .
4. Derate linearly above $80^{\circ} \mathrm{C}$ free-air temperature at a rate of $2.7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ for the SOIC-8 package.
5. Bypassing of the power supply line is required, with a $0.1 \mu \mathrm{~F}$ ceramic disc capacitor adjacent to each optocoupler as illustrated in Figure 17. Total lead length between both ends of the capacitor and the isolator pins should not exceed 20 mm .
6. The JEDEC registration for the 6 N 137 specifies a maximum I_{OH} of $250 \mu \mathrm{~A}$. Avago guarantees a maximum I_{OH} of $100 \mu \mathrm{~A}$.
7. The JEDEC registration for the 6 N 137 specifies a maximum I_{CCH} of 15 mA . Avago guarantees a maximum I_{CCH} of 10 mA .
8. The JEDEC registration for the 6 N 137 specifies a maximum I_{CCL} of 18 mA . Avago guarantees a maximum I_{CCL} of 13 mA .
9. The JEDEC registration for the 6 N 137 specifies a maximum I_{EL} of -2.0 mA . Avago guarantees a maximum I_{EL} of -1.6 mA .
10. The $t_{\text {PLH }}$ propagation delay is measured from the 3.75 mA point on the falling edge of the input pulse to the 1.5 V point on the rising edge of the output pulse.
11. The $\mathrm{t}_{\text {PHL }}$ propagation delay is measured from the 3.75 mA point on the rising edge of the input pulse to the 1.5 V point on the falling edge of the output pulse.
12. $t_{\text {PSK }}$ is equal to the worst case difference in $t_{P H L}$ and/or $t_{P L H}$ that will be seen between units at any given temperature and specified test conditions.
13. See application section titled "Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew" for more information.
14. The $t_{\text {ELH }}$ enable propagation delay is measured from the 1.5 V point on the falling edge of the enable input pulse to the 1.5 V point on the rising edge of the output pulse.
15. The $\mathrm{t}_{\text {EHL }}$ enable propagation delay is measured from the 1.5 V point on the rising edge of the enable input pulse to the 1.5 V point on the falling edge of the output pulse.
16. CM_{H} is the maximum tolerable rate of rise of the common mode voltage to assure that the output will remain in a high logic state (i.e., $\mathrm{V}_{\mathrm{o}}>2.0 \mathrm{~V}$).
17. CM_{L} is the maximum tolerable rate of fall of the common mode voltage to assure that the output will remain in a low logic state (i.e., $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$).
18. For sinusoidal voltages, $\left(\left|\mathrm{dV}_{\mathrm{CM}}\right| / \mathrm{dt}\right)_{\max }=\pi \mathrm{f}_{\mathrm{CM}} \mathrm{V}_{\mathrm{CM}}(\mathrm{p}-\mathrm{p})$.
19. No external pull up is required for a high logic state on the enable input. If the V_{E} pin is not used, tying V_{E} to $V_{C C}$ will result in improved CMR performance. For single channel products only.
20. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together, and pins $5,6,7$, and 8 shorted together.
21. In accordance with UL1577, each optocoupler is proof tested by applying an insulation test voltage $\geq 4500 \mathrm{~V}_{\text {rms }}$ for one second (leakage detection current limit, $I_{1-0} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table, if applicable.
22. In accordance with UL 1577 , each optocoupler is proof tested by applying an insulation test voltage $\geq 6000 \mathrm{Vrms}$ for one second (leakage detection current limit, $I_{1-0} \leq 5 \mu \mathrm{~A}$). This test is performed before the 100% production test for partial discharge (Method b) shown in the IEC/EN/DIN EN 60747-5-5 Insulation Characteristics Table, if applicable.
23. Measured between the LED anode and cathode shorted together and pins 5 through 8 shorted together. For dual channel products only.
24. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together. For dual channel products only

Figure 3. Typical input threshold current vs. temperature

Figure 4. Typical low level output voltage vs. temperature

Figure 6. Typical input diode forward characteristic

Figure 7. Typical temperature coefficient of forward voltage vs. input current

${ }^{*} C_{\text {L }}$ IS APPROXIMATELY 15 pF WHICH INCLUDES

Figure 8. Test circuit for $\mathrm{t}_{\text {PHL }}$ and $\mathrm{t}_{\text {PLH }}$

Figure 9. Typical propagation delay vs. temperature

Figure 11. Typical pulse width distortion vs. temperature

Figure 10. Typical propagation delay vs. pulse input current

Figure 12. Typical rise and fall time vs. temperature

Figure 13. Test circuit for $\mathrm{t}_{\text {EHI }}$ and $\mathrm{t}_{\mathrm{ELH}}$

Figure 14. Typical enable propagation delay vs. temperature

Figure 15. Test circuit for common mode transient immunity and typical waveforms

Figure 16. Thermal derating curve, dependence of safety limiting value with case temperature per IEC/EN/DIN EN 60747-5-5

Figure 17. Recommended printed circuit board layout

*DIODE D1 (1N916 OR EQUIVALENT) IS NOT REQUIRED FOR UNITS WITH OPEN COLLECTOR OUTPUT.

Figure 18. Recommended TTL/LSTTL to TTL/LSTTL interface circuit

Propagation Delay, Pulse-Width Distortion and Propagation Delay Skew

Propagation delay is a figure of merit which describes how quickly a logic signal propagates through a system. The propagation delay from low to high ($\mathrm{t}_{\mathrm{PLH}}$) is the amount of time required for an input signal to propagate to the output, causing the output to change from low to high. Similarly, the propagation delay from high to low $\left(\mathrm{t}_{\text {PHL }}\right)$ is the amount of time required for the input signal to propagate to the output causing the output to change from high to low (see Figure 8).

Pulse-width distortion (PWD) results when $\mathrm{t}_{\text {PLH }}$ and $\mathrm{t}_{\text {PHL }}$ differ in value. PWD is defined as the difference between $t_{\text {PLH }}$ and $t_{\text {PHLL }}$ and often determines the maximum data rate capability of a transmission system. PWD can be expressed in percent by dividing the PWD (in ns) by the minimum pulse width (in ns) being transmitted. Typically, PWD on the order of $20-30 \%$ of the minimum pulse width is tolerable; the exact figure depends on the particular application (RS232, RS422, T-I, etc.).

Propagation delay skew, $\mathrm{t}_{\mathrm{PSK}}$, is an important parameter to consider in parallel data applications where synchronization of signals on parallel data lines is a concern. If the parallel data is being sent through a group of optocouplers, differences in propagation delays will cause the data to arrive at the outputs of the optocouplers at different times. If this difference in propagation delays is large enough, it will determine the maximum rate at which parallel data can be sent through the optocouplers.

Propagation delay skew is defined as the difference between the minimum and maximum propagation delays, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$, for any given group of optocouplers which are operating under the same conditions (i.e., the same drive current, supply voltage, output load, and operating temperature). As illustrated in Figure 19, if the in-

Figure 19. Illustration of propagation delay skew $-\mathbf{t}_{\text {PSK }}$
puts of a group of optocouplers are switched either ON or OFF at the same time, $\mathrm{t}_{\text {PSK }}$ is the difference between the shortest propagation delay, either $\mathrm{t}_{\mathrm{PLH}}$ or $\mathrm{t}_{\text {PHL }}$ and the longest propagation delay, either $t_{\text {PLH }}$ or $t_{\text {PHL }}$.

As mentioned earlier, $\mathrm{t}_{\text {PSK }}$ can determine the maximum parallel data transmission rate. Figure 20 is the timing diagram of a typical parallel data application with both the clock and the data lines being sent through optocouplers. The figure shows data and clock signals at the inputs and outputs of the optocouplers. To obtain the maximum data transmission rate, both edges of the clock signal are being used to clock the data; if only one edge were used, the clock signal would need to be twice as fast.

Propagation delay skew represents the uncertainty of where an edge might be after being sent through an optocoupler. Figure 20 shows that there will be uncertainty in both the data and the clock lines. It is important that these two areas of uncertainty not overlap, otherwise the clock signal might arrive before all of the data outputs have settled, or some of the data outputs may start to change before the clock signal has arrived. From these considerations, the absolute minimum pulse width that can be sent through optocouplers in a parallel application is twice $t_{\text {PSK }}$. A cautious design should use a slightly longer pulse width to ensure that any additional uncertainty in the rest of the circuit does not cause a problem.

The $t_{\text {PSK }}$ specified optocouplers offer the advantages of guaranteed specifications for propagation delays, pulsewidth distortion and propagation delay skew over the recommended temperature, input current, and power supply ranges.

Figure 20. Parallel data transmission example

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2014 Avago Technologies. All rights reserved. Obsoletes AV02-0170EN

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Avago Technologies:
HCPL-0611-000E HCPL-0611-500E HCPL-2601\#300 HCPL-2601\#320 HCPL-2601\#500 HCPL-2601\#520 HCPL-2601-300E HCPL-2601-320E HCPL-2601-360E HCPL-2601-500E HCPL-2601-520E HCPL-2611\#300 HCPL2611\#320 HCPL-2611\#360 HCPL-2611\#500 HCPL-2611\#520 HCPL-2611\#560 HCPL-2611-300E HCPL-2611320E HCPL-2611-360E HCPL-2611-500E HCPL-2611-520E HCPL-2611-560E HCPL-2630\#300 HCPL-2630\#320 HCPL-2630\#500 HCPL-2630-300E HCPL-2630-320E HCPL-2630-500E HCPL-2630-520E HCPL-2631\#300 HCPL2631\#320 HCPL-2631\#500 HCPL-2631\#520 HCPL-2631-300E HCPL-2631-320E HCPL-2631-500E HCPL-2631520E HCPL-4661\#300 HCPL-4661\#320 HCPL-4661\#500 HCPL-4661\#520 HCPL-4661-300E HCPL-4661-320E HCPL-4661-500E HCPL-4661-520E HCNW137-500E HCPL-2630-520 6N137-560

