

OPA244 OPA2244

MicroPower, Single-Supply OPERATIONAL AMPLIFIERS MicroAmplifier™ Series

FEATURES

- MicroSIZE PACKAGES OPA244 (Single): SOT-23-5 OPA2244 (Dual): MSOP-8
- MicroPOWER: I_Q = 40µA/channel
- SINGLE SUPPLY OPERATION
- WIDE BANDWIDTH: Single: 240kHz Dual: 300kHz
- WIDE SUPPLY RANGE: Single Supply: 2.2V to 36V Dual Supply: ±1.1V to ±18V
- SINGLE AND DUAL VERSIONS

APPLICATIONS

- BATTERY POWERED SYSTEMS
- PORTABLE EQUIPMENT
- PCMCIA CARDS
- BATTERY PACKS AND POWER SUPPLIES
- CONSUMER PRODUCTS

DESCRIPTION

The OPA244 (single) and OPA2244 (dual) op amps are designed for very low quiescent current (40μ A/channel) yet achieve excellent bandwidth. Ideal for battery powered and portable instrumentation, both single and dual versions are offered in micro packages for space-limited applications. The dual version features completely independent circuitry for lowest crosstalk and freedom from interaction, even when overdriven or overloaded.

The OPA244 series is easy to use and free from phase inversion and overload problems found in some other op amps. These amplifiers are stable in unity gain and excellent performance is maintained as they swing to their specified limits. They can be operated from single (+2.2V to +36V) or dual supplies ($\pm 1.1V$ to $\pm 18V$). The input common-mode voltage range includes ground—ideal for many single supply applications. The single and dual versions have similar performance, however, there are some differences, such as bandwidth and common-mode rejection. The two versions are interchangeable in most applications.

Both the single and dual versions are offered in miniature, surface-mount packages. OPA244 (single version) comes in the tiny 5-lead SOT-23-5 surface mount, SO-8 surface mount, and 8-pin DIP. OPA2244 (dual version) is available in the MSOP-8 surface mount, SO-8 surface-mount, and 8-pin DIP. They are fully specified from -40° C to $+85^{\circ}$ C and operate from -55° C to $+125^{\circ}$ C. A SPICE Macromodel is available for design analysis.

International Airport Industrial Park • Mailing Address: PO Box 11400, Tucson, AZ 85734 • Street Address: 6730 S. Tucson Blvd., Tucson, AZ 85706 • Tel: (520) 746-1111 • Twx: 910-952-1111 Internet: http://www.burr-brown.com/ • FAXLine: (800) 548-6133 (US/Canada Only) • Cable: BBRCORP • Telex: 066-6491 • FAX: (520) 889-1510 • Immediate Product Info: (800) 548-6132

SPECIFICATIONS: $V_s = +2.6V$ to +36V

At $T_A = +25^{\circ}C$, and $R_L = 20k\Omega$ connected to ground, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $-40^{\circ}C$ to $+85^{\circ}C$.

		OPA244NA, PA, UA			
PARAMETER	CONDITION	MIN	TYP ⁽¹⁾	MAX	UNITS
OFFSET VOLTAGEInput Offset Voltage V_{OS} $T_A = -40^{\circ}C$ to 85°Cvs Temperaturevs Power SupplyPSRR $T_A = -40^{\circ}C$ to 85°C	$V_{CM} = V_S/2$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $V_S = +2.6V \text{ to } +36V$ $V_S = +2.6V \text{ to } +36V$		±0.7 ±4 5	±1.5 ±2 50 50	mV mV μV/°C μV/V μV/V
INPUT BIAS CURRENT Input Bias Current I _B Input Offset Current I _{OS}	$I_{B} \qquad V_{CM} = V_{S}/2$ $I_{OS} \qquad V_{CM} = V_{S}/2$		-10 ±1	-25 ±10	nA nA
$\label{eq:noise} \begin{array}{l} \mbox{NOISE} \\ \mbox{Input Voltage Noise, } f = 0.1 \mbox{ to } 10 \mbox{Hz} \\ \mbox{Input Voltage Noise Density, } f = 1 \mbox{Hz} \\ \mbox{Current Noise Density, } f = 1 \mbox{Hz} \\ \mbox{i}_n \end{array}$			0.4 22 40		µVp-p nV/√Hz fA/√Hz
INPUT VOLTAGE RANGECommon-Mode Voltage Range V_{CM} Common-Mode RejectionCMRR $T_A = -40^{\circ}C$ to $85^{\circ}C$	$V_{CM} = 0$ to (V+) - 1 $V_{CM} = 0$ to (V+) - 1	0 84 ⁽²⁾ 84	98	(V+) –1	V dB dB
INPUT IMPEDANCE Differential Common-Mode			10 ⁶ 2 10 ⁹ 2		Ω pF Ω pF
OPEN-LOOP GAINOpen-Loop Voltage Gain A_{OL} $T_A = -40^{\circ}C$ to $85^{\circ}C$	$V_{O} = 0.5V$ to (V+) - 1 $V_{O} = 0.5V$ to (V+) - 1	86 86	106		dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate SR Settling Time 0.1% Overload Recovery Time	G = 1 V _{IN} • G = V _S		240 0.1 150 8		kHz V/μs μs μs
OUTPUTVoltage Output, Positive V_O $T_A = -40^{\circ}C$ to $85^{\circ}C$ Voltage Output, Negative $T_A = -40^{\circ}C$ to $85^{\circ}C$ Short-Circuit Current I_{SC} Capacitive Load Drive C_{LOAD}	$\begin{array}{l} A_{OL} \geq 86 dB \\ A_{OL} \geq 86 dB \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		ve	V V V mA
POWER SUPPLYSpecified Voltage Range V_S Minimum Operating VoltageQuiescent Current I_Q $T_A = -40^{\circ}C$ to 85°C	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$ $I_{O} = 0$ $I_{O} = 0$	+2.6	+2.2 40	+ 36 60 70	ν ν μΑ μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance ØJA SOT-23-5 Surface-Mount SO-8 Surface-Mount 8-Pin DIP		40 55 55	200 150 100	85 125 125	, , , , , , , , , , , , , , , , , , ,

NOTES: (1) V_S = +15V. (2) CMRR improves with increasing supply voltage, see "Common-Mode Rejection vs Supply Voltage" typical curve.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.

SPECIFICATIONS: $V_s = +2.6V$ to +36V

At $T_A = +25^{\circ}C$, and $R_L = 20k\Omega$ connected to ground, unless otherwise noted. **Boldface** limits apply over the specified temperature range, $-40^{\circ}C$ to $+85^{\circ}C$.

		OPA2244EA, PA, UA			
PARAMETER	CONDITION	MIN	TYP ⁽¹⁾	MAX	UNITS
$\label{eq:states} \begin{array}{ c c } \textbf{OFFSET VOLTAGE} \\ Input Offset Voltage & V_{OS} \\ \hline \textbf{T}_{A} = -40^{\circ}\textbf{C} \ to \ 85^{\circ}\textbf{C} \\ \hline vs \ \text{Temperature} & dV_{OS}/dT \\ \hline vs \ \text{Power Supply} & PSRR \\ \hline \textbf{T}_{A} = -40^{\circ}\textbf{C} \ to \ 85^{\circ}\textbf{C} \\ \hline \text{Channel Separation, dc} \end{array}$	$V_{CM} = V_S/2$ $T_A = -40^{\circ}C \text{ to } 85^{\circ}C$ $V_S = +2.6V \text{ to } +36V$ $V_S = +2.6V \text{ to } +36V$		±0.3 ±2.3 5 0.5	±1.5 ± 2 50 50	mV mV μV/°C μV/ν μV/ν μV/ν
INPUT BIAS CURRENT Input Bias Current I _B Input Offset Current I _{OS}	$V_{CM} = V_S/2$ $V_{CM} = V_S/2$		-10 ±1	-25 ±10	nA nA
$\label{eq:noise} \begin{array}{l} \textbf{NOISE} \\ \text{Input Voltage Noise, } f = 0.1 \text{ to } 10\text{kHz} \\ \text{Input Voltage Noise Density, } f = 1\text{kHz} \\ \text{Current Noise Density, } f = 1\text{kHz} \\ \end{array} \begin{array}{l} e_n \\ i_n \end{array}$			0.4 22 40		μVp-p nV/√Hz fA/√Hz
$\begin{tabular}{lllllllllllllllllllllllllllllllllll$	$V_{CM} = 0$ to (V+) - 1 $V_{CM} = 0$ to (V+) - 1	0 72 ⁽²⁾ 72	98	(V+) –1	V dB dB
INPUT IMPEDANCE Differential Common-Mode			10 ⁶ 2 10 ⁹ 2		Ω pF Ω pF
OPEN-LOOP GAINOpen-Loop Voltage Gain A_{OL} $T_A = -40^{\circ}C$ to $85^{\circ}C$	$V_0 = 0.5V$ to $(V+) - 1$ $V_0 = 0.5V$ to $(V+) - 1$	86 86	106		dB dB
FREQUENCY RESPONSE Gain-Bandwidth Product GBW Slew Rate SR Settling Time 0.1% Overload Recovery Time	G = 1 V _{IN} • G = V _S		300 0.1 150 8		kHz V/μs μs μs
OUTPUTVoltage Output, Positive V_O $T_A = -40^{\circ}C$ to $85^{\circ}C$ Voltage Output, Negative $T_A = -40^{\circ}C$ to $85^{\circ}C$ Short-Circuit Current I_{SC} Capacitive Load Drive C_{LOAD}	$\begin{array}{l} A_{OL} \geq 86dB\\ A_{OL} \geq 86dB\\ A_{OL} \geq 86dB\\ A_{OL} \geq 86dB\\ A_{OL} \geq 86dB \end{array}$	(V+) − 1 (V+) − 1 0.5 0.5	(V+) – 0.75 0.3 –25/+12 See Typical Curr	ve	V V V W mA
POWER SUPPLYSpecified Voltage Range V_S Minimum Operating VoltageQuiescent Current (per amplifier) I_Q $T_A = -40^{\circ}C$ to $85^{\circ}C$	$T_{A} = -40^{\circ}C \text{ to } 85^{\circ}C$ $I_{O} = 0$ $I_{O} = 0$	+2.6	+2.2 40	+36 50 63	ν ν μΑ μΑ
TEMPERATURE RANGE Specified Range Operating Range Storage Range Thermal Resistance MSOP-8 Surface-Mount SO-8 Surface-Mount 8-Pin DIP		40 55 55	150 150 100	85 125 125	°C °C W,O° W,O° W,O°

NOTES: (1) V_S = +15V. (2) CMRR improves with increasing supply voltage, see "Common-Mode Rejection vs Supply Voltage" typical curve.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Supply Voltage	
Signal Input Terminals, Voltage ⁽²⁾	(V–) –0.5V to (V+) +0.5V
Current ⁽²⁾	
Output Short-Circuit ⁽³⁾	Continuous
Operating Temperature	–55°C to +125°C
Storage Temperature	–55°C to +125°C
Junction Temperature	150°C
Lead Temperature (soldering, 10s)	300°C

NOTES: (1) Stresses above these ratings may cause permanent damage. Exposure to absolute maximum conditions for extended periods may affect device reliability. (2) Input terminals are diode-clamped to the power supply rails. Input signals that can swing more than 0.5V beyond the supply rails should be current-limited to $200\mu A$ or less. (3) Short-circuit to ground, one amplifier per package.

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

PACKAGE/ORDERING INFORMATION

PRODUCT	PACKAGE	PACKAGE DRAWING NUMBER ⁽¹⁾	SPECIFIED TEMPERATURE RANGE	PACKAGE MARKING	ORDERING NUMBER ⁽²⁾	TRANSPORT MEDIA
Single OPA244NA " OPA244PA OPA244UA "	SOT-23-5 Surface-Mount " 8-Pin DIP SO-8 Surface-Mount "	331 " 006 182 "	-40°C to +85°C " -40°C to +85°C -40°C to +85°C "	A44 " OPA244PA OPA244UA "	OPA244NA/250 OPA244NA/3K OPA244PA OPA244UA OPA244UA/2K5	Tape and Reel Tape and Reel Rails Rails Tape and Reel
Dual OPA2244EA " OPA2244PA OPA2244UA "	MSOP-8 Surface-Mount " 8-Pin DIP SO-8 Surface-Mount "	337 " 006 182 "	-40°C to +85°C " -40°C to +85°C -40°C to +85°C "	A44 " OPA2244PA OPA2244UA "	OPA2244EA/250 OPA2244EA/2K5 OPA2244PA OPA2244UA OPA2244UA/2K5	Tape and Reel Tape and Reel Rails Rails Tape and Reel

NOTES: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book. (2) Products followed by a slash (/) are only available in Tape and Reel in the quantities indicated (e.g., /250 indicates 250 devices per reel). Ordering 3000 pieces of "OPA244NA/3K" will get a single 3000 piece Tape and Reel. For detailed Tape and Reel mechanical information, refer to Appendix B of Burr-Brown IC Data Book.

TYPICAL PERFORMANCE CURVES

At $T_A = 25^{\circ}C$, $V_S = +15V$, and $R_L = 20k\Omega$ connected to Ground, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = 25^{\circ}C$, $V_S = +15V$, and $R_L = 20k\Omega$ connected to Ground, unless otherwise noted.

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = 25^{\circ}C$, $V_S = +15V$, and $R_L = 20k\Omega$ connected to Ground, unless otherwise noted.

OUTPUT VOLTAGE SWING vs OUTPUT CURRENT 15 R_L to $V_S/2$ 14 13 25°C Output Voltage Swing (V) 12 125°C 11 10 -10 -11 55°C -12 125°C -13 -14 25°C -15 0 ±2 ±6 ±10 ±12 ±14 ±4 ±8 Output Current (mA)

TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = 25^{\circ}C$, $V_S = +15V$, and $R_L = 20k\Omega$ connected to Ground, unless otherwise noted.

APPLICATIONS INFORMATION

The OPA244 is unity-gain stable and suitable for a wide range of general purpose applications. Power supply pins should be bypassed with 0.01μ F ceramic capacitors.

OPERATING VOLTAGE

The OPA244 can operate from single supply (+2.2V to +36V) or dual supplies (± 1.1 to $\pm 18V$) with excellent performance. Unlike most op amps which are specified at

only one supply voltage, the OPA244 is specified for real world applications; a single set of specifications applies throughout the +2.6V to +36V (\pm 1.3 to \pm 18V) supply range. This allows a designer to have the same assured performance at any supply voltage within this range. In addition, many key parameters are guaranteed over the specified temperature range, -40°C to +85°C. Most behavior remains unchanged throughout the full operating voltage range. Parameters which vary significantly with operating voltage or temperature are shown in typical performance curves.

FIGURE 1. Low and High-Side Battery Current Sensing.

OPA244, 2244

FIGURE 2. Recommended SOT-23-5 and MSOP-8 Solder Footprints.

